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A. Supplementary Material

In this appendix, we include further details and results.
Specifically, Sections A.1, A.2 and A.3 provide deeper in-
sights on the proposed setting, the method, and the experi-
mental setup, respectively, while Sections A.4 and A.5 con-
tain more results, both quantitative and qualitative.

A.1. Additional Details on the Setting

In this section, we describe the benefits of the proposed
holistic segmentation setting in greater detail, considering
both the impact on downstream tasks and the differences
with other perception tasks addressing unknown objects.

The proposed holistic segmentation setting aims to seg-
ment any unseen, unknown objects without prior knowl-
edge about the unknowns while segmenting known areas.
In this context, ”unseen unknowns” means any object of any
category outside the known classes learned during training,
such as the sheep in Figure 6 for a method trained on, e.g.,
Cityscapes [7], as well as unidentified and distorted parts
following a car accident.

A.1.1 Motivation

The importance of identifying unseen unknowns arises
from safety-critical scenarios, such as autonomous driving,
where ignoring them can lead to dangerous consequences
when simply using the predicted segments for downstream
tasks, e.g., path planning. This is shown in the top right of
Figure 6. Since even large-scale datasets are limited rep-
resentations of the real world, there will always be corner
cases and long tail samples which are problematic for stan-
dard models [15]. Therefore, it is crucial to identify these
cases and then deal with them safely via downstream tasks.
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Figure 6. Motivation diagram for identifying unseen, unknown
objects on a sample of [3] considering path planning as a down-
stream task, and hypothesizing that sheep is not part of the train-
ing data (i.e., unseen unknown). Shown segments are not predic-
tions. State-of-the-art approaches dangerously ignore unknowns
(top right) [5]. OOD segmentation does not identify instances of
unknowns (bottom right) [14], making it difficult for downstream
tasks as the unknowns cannot be tracked, and their trajectory can-
not be predicted. The proposed setting (bottom right) identifies
individual unseen unknowns, leading to a safe path.

OOD segmentation [14], i.e., segmenting unknown ar-
eas as a whole and not identifying individual instances of
unknowns, flags the presence of something unknown in the
input. In the context of downstream tasks, such as path plan-
ning, a single OOD segment (bottom left in the figure) could
trigger an alert state, leading to a potential stop, which is a



Setting Data Assumptions Identifiable Objects Not Identifiable Objects

open-set panoptic segm. [13, 22] unknowns are already in
the training data, within
void areas

known and unlabeled ob-
jects present in the train-
ing data as void

categories outside of the
training data [13]

open-vocabulary, zero-shot [23, 12] the underlying language
model knows about every
unknown

objects known by the lan-
guage model [19]

categories outside of the
training data of the lan-
guage model [19]

holistic segmentation [ours] none any known and unknown
(i.e., unseen) object

none

Table 4. Comparison of tasks and settings dealing with instances of unknown objects. The second column (Data Assumptions) is related
to unknowns. The 2 rightmost columns represent the objects that are theoretically identifiable or not, given the setting.

safe state. However, given that OOD segmentation does not
separate unknown objects into instances, once found, it is
unclear whether they are moving or static, which means that
it would be difficult for path planning. Instead, by segment-
ing instances of unseen unknowns (bottom right in the fig-
ure), holistic segmentation allows tracking unseen objects
and estimating their trajectory, leading to a safe path. This
motivates the instance segmentation of unknowns, which
brings benefits similar to those of instance segmentation
compared to semantic segmentation for known objects.

Also critical is the ability to deal with any unseen, un-
known object category and not be restricted to a limited
subset of them. This is of utmost importance to address
the wide variability of objects and scenarios encountered
in the real world. While previous settings focused on re-
identifying already-seen objects [13, 23], we design holistic
segmentation specifically to address any unseen category.

A.1.2 Comparison with Other Settings

As shown in Table 4, compared with other tasks and settings
also dealing with unknown objects, the proposed holistic
segmentation makes no assumptions about the unknown ob-
jects, allowing one to segment any objects. Instead, zero-
shot and open-vocabulary approaches assume that text de-
scriptions of unknown objects are available [12, 23]. Open-
set panoptic segmentation methods assume unknowns are
confined within void regions at training and test time [22,
13]. In the latter case, void may not be available or not suf-
ficiently large and diverse (as in Cityscapes [7]), depend-
ing on the training data. Due to their construction, both
of these setups inherently restrict the pool of recognizable
objects to those for which text descriptions are available
through a vision-language model (open-vocabulary) or to
those present within their own training set (open-set panop-
tic).

For example, for the scene in Figure 6, because of its
setup, EOPSN [13] cannot identify any sheep unless a vast

amount of images containing sheep is part of its training
data (with sheep being labeled as void, or directly as a ded-
icated class sheep). Open-vocabulary methods would rely
on the fact that a language model [19] already knows about
sheep to be able to identify them in the image. While the
concept of sheep is relatively simple and could be assumed
to be known by a large language model, there is no guar-
antee that such a model would know about every possible
object and scene that can be encountered in real life (e.g.,
unidentified pieces on the road following a car accident),
meaning that open-vocabulary approaches cannot deal with
long tail samples from the distribution of the natural world,
simply because their language model cannot process them.

Again, given that datasets include by definition only a
fraction of the diversity of the world [15], also datasets to
test the ability of a model to identify unknowns are lim-
ited [18, 3, 1], containing only a small amount of the pos-
sible objects and situations that can be encountered in real
life. Therefore, to operate reliably in real unconstrained sce-
narios, it is of utmost importance not to have limitations
on the types of recognizable objects, which should go be-
yond those found in existing datasets. Instead, relying on a
language model to identify unknowns is equivalent to shift-
ing the unknown problem to a different model. As shown
with CLIP by Radford et al. [19], large language models
also have issues with OOD samples. For example, uniden-
tified broken car parts lying on the ground after an accident
would be difficult to describe, so it would be problematic
for language models. Thus, when given inputs that are un-
seen and unknown to the underlying language model, open-
vocabulary and zero-shot methods would fail to identify the
unknown objects. Furthermore, existing open-set panoptic
works rely on the presence of unknowns (intended as unla-
beled) directly in the training data through the void class.
This highlights the need for a new and unconstrained solu-
tion.

For these reasons, the critical differences between the
proposed holistic segmentation setting and previous tasks



are that holistic segmentation is not constrained in terms
of the types of unknown objects that are identifiable and
that holistic segmentation does not assume the presence
of unknowns in the training data, thereby segmenting any
unseen, unknown object without any prior knowledge
about unknowns. Limited by design by either the un-
knowns that are known to the underlying language model
(e.g., open-vocabulary) or the unknowns that are directly
present in the training data (e.g., open-set panoptic seg-
mentation), previous tasks do not enable the identification
of any instance of unknowns and rely on prior knowledge
about unknowns and their data distribution (e.g., through
CLIP [19] or by learning void).

A.2. Additional Details on the Method

Loss functions As described in Section 4.3, the pro-
posed method is trained with a combination of losses: a se-
mantic loss Ls, an object detection loss Lo, a prototype loss
Lp, and a discriminative loss Ld. The discriminative loss is
aimed at learning meaningful embeddings. It is composed
of three different terms [8], namely variance Lva to attract
elements towards the mean, distance Ldi to push away dif-
ferent groups, and regularization Lre to prevent the diver-
gence of clusters from the origin:

Ld = λ41Lva + λ42Ldi + λ43Lre

Lva = 1
|Ω|

∑
ω∈Ω

1
Nω
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2
+
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||]2+
Lre =

1
|Ω|

∑
ω∈Ω ||µω||

(1)

where: |Ω| is the number of prototypes, Nω is the number of
embeddings associated to the prototype ω, µω is the mean
embedding of the cluster related to ω, ||·|| is the L2 distance,
[x]+ = max(0, x) is the hinge (i.e., until which threshold
the terms are active [8]), ωA ̸= ωB , and we follow [8] for
the hyperparameters, e.g., λ41 = λ42 = 1 and λ43 = 0.001.

Clustering unseen unknowns As described in Sec-
tion 4.2, we use DBSCAN [9] to cluster the embeddings of
unknown regions into individual unknown objects. Specif-
ically, DBSCAN has multiple advantages: it does not need
the number of clusters as input (which is unknown in our
case), it is effective and very fast, has a low memory foot-
print, and distinguishes outliers (Table 3 shows the impact
of this feature with A3-A4). Although other traditional
clustering methods (e.g., Mean Shift, Affinity Propagation,
Birch) are theoretically applicable in our setting, they come
with drawbacks (e.g., have high memory requirements, do
not output outliers, are significantly slower, or tend to de-
liver sub-optimal results). On the other hand, popular ap-
proaches that require the number of clusters as input can-
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Figure 7. Trade-off between known (i.e., Cityscapes [7] validation
set) and unknown (i.e., Lost&Found [18] test set) performance
introduced by OSIS [22], compared to our approach, both using
SNGP [17] and our improved DPN (i.e., [ours] full, in blue). The
different data points are obtained by varying the parameter t.

not be applied in our settings (e.g., K-Means). Hence, DB-
SCAN was selected.

A.3. Additional Details on the Experimental Setup

Clustering parameters DBSCAN requires two param-
eters: minPts (number of points in a neighborhood to
count as a core point) and ϵ (maximum neighborhood size).
To find such parameters, we trained a model (i.e., on
Cityscapes [7] or MS COCO [16]), then selected (minPts,
ϵ) with a simple grid search maximizing PQ on a random
subset of the known dataset (i.e., without unknowns). To-
wards this end, we formed instances as follows: ignoring
the detection output (i.e., using only the embeddings) and
determining their class via majority voting from the seman-
tic output. In particular, when finding (minPts, ϵ), this
means treating the embeddings of knowns as if they were
unknowns (apart from their semantic class), assuming that
the model treats them similarly. It is essential to consider
that the parameters were selected on the known objects (i.e.,
from Cityscapes or COCO), despite DBSCAN being used
only for separating unknowns (i.e., in the Lost&Found [18]
dataset or the held out classes of COCO). We did this to
maintain the unknowns completely unseen (i.e., only as test
set), as in real scenarios.

Comparisons with previous works As described in
Section 5.1, we compared our uncertainty-based solution
with prior works learning the void class and tested various
uncertainty estimators within our proposed framework. The
following paragraphs further detail how these other meth-
ods were trained.

Following our setup of training on Cityscapes [7] and
transferring to Lost& Found [18] without any fine-tuning,
prior works addressing open-set panoptic segmentation



L&F (unseen) open CS
Uncertainty method AP FPR95 ↓ mIoU

softmax 16.72 22.88 71.77
MC Dropout [10] 11.22 13.94 68.31
DML [2] 3.14 83.04 69.86
DUQ [21] 5.43 26.64 68.78
DPN [20] 5.43 19.79 66.99
SML [14] 16.91 51.67 70.69
SNGP [17] 22.70 12.02 70.68
improved DPN [ours] 25.44 19.10 70.10

Table 5. Comparison of open-set semantic segmentation on
Lost&Found [18] test set of uncertainty estimators based on
DeepLabV3+ [4] and trained only on Cityscapes (CS) [7].

(i.e., OSIS [22] and EOSPN [13]) were trained by learn-
ing the void class of Cityscapes, unlike our U3HS. This
unlabeled class comprises all pixels that do not fulfill the
requirements to be part of one of the standard 19 anno-
tated classes. Some of these void pixels are systematic,
e.g., the back side of traffic signs and street lights (exclud-
ing poles). By exploiting the variability within void, the
models learn the extra class decision boundary as a fall-
back covering anything far from the other classes. To do
so, OSIS learns a constant U representing such boundary.
In particular, we adapted OSIS from LiDAR point clouds to
RGB images, applying it to each pixel instead of point and
changing architecture accordingly. As for ours and all other
models in this work, we used a ResNet50 [11] as backbone
and decoders following the structure of DeepLabV3+ [4].
Moreover, to keep the GPU memory low, we used the same
F = 8 for the embedding size as in our U3HS. For the ex-
periments on MS COCO [16], we followed the K=5% setup
of EOPSN [13], turning 4 classes into void to facilitate prior
works learning on void, by ensuring a diverse distribution
of its pixels, as they now cover a diverse set of classes (e.g.,
pizza and car).

For the other uncertainty estimation approaches evalu-
ated in this work, we used the authors descriptions and im-
plementations, adapting [21, 17] from image classification
to semantic and panoptic segmentation. For DML [2], we
used the authors best hyperparameters, therefore a variance
loss weight γV L = 0.01, and weights β = 20 and γ = 0.6.
For SML [14], we did not employ the boundary suppres-
sion, as it did not improve the results. This might be due to
Lost&Found [18] being annotated only for the OOD objects
and a coarse road segment. For DUQ [21], we used an em-
bedding dimension of m = 8, due to constrained training
resources, same as our F = 8. Then, we used length scale
σ2 = 0.3 and exponential smoothing factor γ = 0.999. For
SNGP [17], we again used an embedding dimension D = 8
(due to the limited training resources), no layer norm for the
embeddings, an exponential smoothing factor γ = 0.99 for

Configuration L&F (unseen) open CS
Ref. Activ.F. KL AP FPR95 ↓ mIoU

[20] exp yes 5.43 19.89 66.99
[ours] softplus yes 3.43 25.97 64.36
[ours] softplus no 25.44 19.10 70.10

Table 6. Ablation study on uncertainty estimates for open-set se-
mantic segmentation. Models trained only on Cityscapes [7].

updating Σ and 50 samples for Monte Carlo averaging to
estimate the uncertainty.

MS COCO As described in the main paper, given
that there is no official set of unknown classes for MS
COCO [16], we treat as unknown the least frequent 20%
known classes. These classes are: baseball bat, bear, fire
hydrant, frisbee, hair drier, hot dog, keyboard, microwave,
mouse, parking meter, refrigerator, scissors, snowboard,
stop sign, toaster, and toothbrush. We held out all train-
ing samples where any of these 16 classes appeared, such
that they were completely unseen to the models.

Ablation study for holistic segmentation With refer-
ence to Table 3, A1 is our baseline, which was built upon
OSIS [22]. As OSIS, A1 included learned instance-aware
embeddings, but unlike OSIS, it featured a semantic de-
coder delivering semantic segmentation and uncertainty es-
timates based on the semantic output via our improved
DPN. Moreover, as for all our models, A1 did not learn the
void class (unlike OSIS). A2 featured the relaxed score for
the embedding association (described in Section 4.1), which
lets the variance be indirectly controlled by the final task
(i.e., the loss Lp, Section 4.3). Unlike A1 and A2, which
had a shared head between embeddings and prototypes (i.e.,
as in OSIS), A3 introduced a dedicated prototype head. In
practice, this meant having more layers fully dedicated to
the embeddings and the prototypes separately instead of
sharing the computation until a later stage. Therefore, this
allowed for more expressive and purposed features. A4 did
not reassign to the known classes the outliers obtained from
clustering unknowns via DBSCAN. Therefore, these pixels
were kept unknown and shared the same instance ID. A5
did not perform majority voting (Section 4.1). This meant
directly assigning the semantic classes predicted by the se-
mantic branch to all known instance pixels instead of en-
forcing coherence within an instance. This caused the in-
stances to be fragmented according to how many seman-
tic classes they contained, decreasing RQ. Finally, A6 pre-
dicted the semantic classes for stuff areas directly from the
semantic prediction branch instead of matching the embed-
dings with stuff prototypes as in A1-A5 (Section 4.1).

A.4. Additional Quantitative Results

Trade-off between known and unknown Figure 7
shows the trade-off between the performance on known and



ResNet depth F PQ RQ SQ

18 2 33.0 42.3 77.9
18 4 38.9 49.8 78.0
18 8 41.3 52.7 78.3
18 16 42.3 53.8 78.7
18 32 42.1 53.6 78.5

50 8 47.7 60.4 79.0

Table 7. Different embedding dimensions F on closed-set panop-
tic segmentation on the validation set of Cityscapes [7]. The first
column indicates the depth of the ResNet [11] backbone used (i.e.,
18 for ResNet18).

unknown for our framework, both with SNGP [17] and our
improved DPN, compared to that of OSIS [22]. The differ-
ent data points were extracted by evaluating the outputs at
different thresholds t, namely [2, ..., 5], and ignoring the un-
certainty estimates entirely (i.e., closed-set, reported where
PQ Lost&Found is 0). The hyperparameter t directly af-
fects how high the uncertainty estimates must be for their
associated pixels to be considered unknown. This has an
impact on the performance on open-set Cityscapes [7] and
Lost&Found [18], since changing in output what is consid-
ered unknown alters what is regarded as in-domain (i.e.,
known) as well. OSIS [22] does not have such a hyper-
parameter as it considers unknown everything predicted as
void. Overall, it can be seen that our proposed framework
offers a better trade-off in both configurations (red and blue)
than that of OSIS [22] (yellow). Furthermore, using our full
approach (i.e., our framework with our improved DPN) typ-
ically gave the best trade-off between known and unknown
without compromising the metrics too much (blue).

Unknowns in semantic segmentation In Table 5, we
compare the ability of a wide variety of uncertainty es-
timators (i.e., [20, 21, 17, 14, 2], and MC Dropout with
25 runs [10]) to find unknowns in a semantic setting on
Lost&Found [18], after training on Cityscapes [7]. This
meant retraining all methods under the same conditions
while also extending DPN [20], DUQ [21], and SNGP [17]
to semantic segmentation. Semantic models (Tables 5
and 6) used smaller crops sized 512×256 compared to the
other experiments. For uncertainty estimation, we evalu-
ated the ability to identify unknowns reporting the AP on
the unknown class [18], as well as the false positive rate
at the recall 95 (FPR95). For semantic segmentation on
Cityscapes, we computed the mIoU. As seen in Table 3,
DUQ [21] and DPN [20] performed worse than SNGP [17].
MC Dropout [10] underperformed softmax, probably due
to the contrasting opinions from 25 forward passes. Our
method was the best at finding unknowns (AP) with high-
quality uncertainty estimates (FPR95). Table 5 also reports
the mIoU on Cityscapes (CS), showing that all methods in-
troduce a trade-off between OOD and in-domain outputs,

Method Clustering PQ RQ SQ

U3HS [ours] Mean Shift 2.71 3.91 69.22
U3HS [ours] DBSCAN 9.36 14.83 63.14

Table 8. Transfer from Cityscapes [7] to Lost&Found-300 [18] test
set (i.e., on the first 300 samples, see Section A.4). DBSCAN (our
choice) is compared to Mean Shift to cluster the embeddings of
unknown areas.

as overestimating the uncertainty decreases the in-domain
mIoU. Balancing these two complementary aspects is not
trivial, with our approach and SNGP managing it best.

Ablation on uncertainty estimation Table 6 compares
the DPN [20] we adapted from image classification to se-
mantic segmentation with our extension. Our improvements
were oriented to simplify the training process and help con-
vergence. First we applied the softplus activation function
to the last semantic layer, instead of exp as in DPN [20].
We chose softplus because it grows slower than exp and it
is smooth, differentiable everywhere, and monotonic. This
significantly improved the training stability at the cost of a
reduced quality of the uncertainty estimates. Finally, due
to the complexity of modeling the target distribution in our
setting, omitting the KL term used by DPN [20] further sta-
bilized training and boosted the performance on all metrics.

Impact of embedding size and architecture Table 7
shows the effect of different embeddings dimensions F on
a smaller ResNet18 [11]. In the rest of this work, all ex-
periments used F = 8 and ResNet50, as in the last line of
the table, due to constrained training resources. The em-
bedding dimension directly affects the learning capability
of the model. Since the instance-aware embeddings are a
critical part of the output, a smaller F is linked to inexpres-
sive embeddings that cannot be as discriminative as those
from a larger F . Therefore, increasing F improved all met-
rics except for the larger F = 32. This can be attributed
to the small ResNet18 backbone being already saturated at
F = 16, unable to extract rich and detailed features for
the larger embeddings to exploit. With a larger model (e.g.,
ResNet101), even higher embedding dimensions F might
be beneficial. Table 7 shows that our proposed approach,
given less constrained resources, could deliver better results
when using an embedding dimension higher than the F = 8
employed across this work. The table also shows the com-
parison between ResNet18 and ResNet50, with the latter
delivering over 15% higher PQ at the same F = 8. This
shows how our proposed approach would perform with a
larger backbone.

Impact of the clustering method In Table 8 we com-
pare two popular clustering methods within our U3HS
framework, namely DBSCAN and Mean Shift [6]. Due to
the very high computation effort and memory required by
Mean Shift, we opted for the following setup for this ex-
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Figure 8. Example predictions of OSIS [22] and the proposed U3HS on unknown categories from the test set of Lost&Found [18]. The
models were trained on Cityscapes [7] and transferred to Lost&Found without any fine-tuning. OSIS found unknowns as the void class
(learned during training), while our U3HS discovered them via uncertainty estimation. Black regions in OSIS’s outputs, including around
unknowns, represent pixels predicted as part of the unknown instance of the ego vehicle bonnet: since the bonnet is labeled as void in the
training set, OSIS learned it as such and it turned it into an unknown instance at inference time. White arrows mark labeled OOD objects.

periment. First, instead of a standard CPU implementation,
we used a parallelized CUDA version of the algorithm [24].
Then, due to the still very high memory requirements, spe-
cific samples of Lost&Found caused memory issues. There-
fore, we reduced the size of the test set of Lost&Found [18]
to its first 300 samples (Lost&Found-300), which were not
problematic. These 300 samples are sufficient to indicate
the effect of using Mean Shift instead of DBSCAN. Table 8

shows the superiority of DBSCAN for this setting, with a
3.5x higher PQ and 3.8x better RQ. In particular, RQ should
be the focus as we compare instance segmentation of un-
knowns.

Additional details on EOPSN vs. OSIS As described
in Section 5.2, EOPSN always diverged on Cityscapes de-
spite numerous attempts, leading to null true positives, as
shown in Table 1. OSIS did not suffer from this issue:
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Figure 9. Additional example predictions of the proposed U3HS on unknown categories from the test set of Lost&Found [18]. The model
was trained on Cityscapes [7] and transferred to Lost&Found without any fine-tuning. White arrows mark labeled OOD objects.

EOPSN’s mining strategy requires associating similar ”un-
knowns” across different inputs, but OSIS operates frame-
by-frame. Since void pixels are unstructured and unde-
fined in Cityscapes, EOPSN’s association fails. As this
process is a fundamental step of its training procedure, it
makes EOPSN diverge and leads to null scores due to the
absence of true positives. Instead, in EOPSN’s setup (i.e.,
re-identifying unlabeled objects seen during training), such
associations can be made across the instances of the classes
EOPSN’s authors treat as void or ”unknown” (e.g., all cars
in their setup, as in Table 2). Therefore, on MS COCO (Ta-
ble 2), EOPSN managed to identify a few true positives,
thereby scoring more than 0 for PQ and RQ and signifi-
cantly more for SQ as it considers only the IoU of matched
segments (TP) and not the wrong predictions (FP and FN).

Varying number of unknowns Both EOPSN and
DDOSP showed that their performance drops across the
board by increasing the amount of void classes to detect
(i.e., K, pseudo-unknowns), especially for unknowns. As
shown in Table 1, they perform poorly also with K = 0.
Instead, our U3HS does not rely on void, so it is unaffected
by K or what is assigned to void. This means that U3HS’s
performance varies only slightly with different Ks, as for
random initialization. Moreover, whether turning known
classes into void (MS COCO, Table 2, with K = 5%) or
not (Lost&Found, Table 1, K = 0), our method outper-
forms prior works despite letting the others learn from un-
knowns via void. Figure 8 shows this qualitatively. Thanks
to uncertainty estimation, our setup has an edge with un-
seen categories (e.g., Table 1). Increasing K for open-set
works (i.e., treating more classes as void) means reducing
the number of classes that can be segmented semantically.

Therefore, the proposed setting is more practical than open-
set panoptic and open-vocabulary because, for ours, no un-
knowns need to be part of the training of any model (simpler
data collection), and ours detects any unseen categories.

A.5. Additional Qualitative Results

A.5.1 Qualitative Comparison

Figure 8 shows a comparison of the predictions of the pro-
posed U3HS with the prior work OSIS [22], as well as the
regions each predicted as unknown, on a set of samples
from Lost&Found [18]. In particular, ours found unknowns
as segments estimated as highly uncertain, and OSIS found
them as the pixels predicted to be part of the learned void
class.

From the images, it can be seen how for the most part,
OSIS managed to learn a relatively good class boundary
around the void class, as it was typically able to predict the
OOD objects as unknown via void. This is interesting as
it shows how OSIS can potentially work with challenging
unseen unknowns. However, the same figure also shows
the substantial limitations of learning and predicting void
due to the assumptions about the data distributions this en-
tails. In the first image, OSIS completely ignored the un-
known object, assigning it to the road class, while in the
fifth image, it detected the toy as car. In contrast, in the
last picture, OSIS predicted almost everything as unknown.
This proves how the binary aspect introduced by predict-
ing the void class (a pixel is either unknown, by being void,
or known, if another class) does not cope well with the di-
versity and unpredictability of the scenes in unconstrained
real-world settings. Specifically, predicting the void class
severely relies on the closed-set training data, as the suc-



cess of such a method is directly related to the diversity of
the void class seen during training, which is limited as it
cannot correctly sample the long tail of the data distribu-
tion [15].

Nevertheless, as shown already in Section 5, estimating
the uncertainty allows to properly cope with unknown ob-
jects by adding an extra layer of prediction. Contrary to
the idea of prior works (Section 2) of predicting unknowns
via the void class, which directly competes with the other
semantic classes for being part of the output, uncertainty
estimates go on top of the standard semantic predictions.
Although this complicates dealing with multiple network
outputs, it offers a wider spectrum and deeper insights since
the uncertainty could be ignored or considered with vari-
ous thresholds depending on the situation (Figure 7), for the
same trained model and output. Since estimating the uncer-
tainty aims at smoothly quantifying the domain gap from
the training data, we believe it is better suited to highly un-
predictable unseen real-world scenarios as in holistic seg-
mentation settings.

Furthermore, Figure 8 shows the capability of each
method to identify instances of unknown OOD objects. For
both approaches, this is related to the clustering of embed-
dings corresponding to those pixels predicted as unknown,
via void (OSIS), or as highly uncertain (ours). In partic-
ular, OSIS tended to over-fragment unknown objects into
several small instances, as seen in the fourth, sixth, eighth,
and last images. This again proves our modifications’ ef-
fectiveness when dealing with the embeddings, as described
in Section 4 and evaluated in Table 3. Additionally, OSIS
could not distinguish the two neighboring OOD objects in
the sixth image. Moreover, OSIS often improperly assigned
large regions to the same unknown instance. Similarly to
ours, OSIS considers every unknown segment as part of an
instance. By learning and predicting the void class, during
training, OSIS learned to precisely segment the bonnet of
the ego car (labeled as void in Cityscapes [7]). However,
at test time on Lost&Found it could not tell the ego vehicle
bonnet apart from a wide variety of pixels. This was the
case for the unknown object in the seventh image, which
was entirely assigned to the same instance as the bonnet or
many other segments around knowns and unknowns (col-
ored in black). The ego vehicle bonnet unknown instance
(black) often surrounded other predicted unknown instances
(e.g., in the second, fourth, sixth, eighth, and last images).

A benefit of estimating the uncertainty is the ability to
account for a wide array of unusual regions. This is valu-
able for downstream tasks, e.g., trajectory prediction and
path planning. Specifically, uncertainty estimates by the
proposed U3HS were high on the stroller in Figure 1, as
well as in Figure 4 on the walking assistance device on the
left of the upper image and the cart pushed by the man wav-
ing on the right of the bottom image in Figure 9, none of

which were labeled as unknown in the dataset [18], as they
were not part of the objects manually placed by the authors.
In Figure 8, this is repeated from a different perspective on
the stroller in the background of the second image, the un-
usual van with the open doors in the fourth image, and the
duffel bag in the sixth. By learning and predicting void,
OSIS ignored these unusual regions as it lacks the flexibil-
ity and granularity that our U3HS offers by estimating the
uncertainty.

A.5.2 Additional Results on Unknowns

Lost&Found Figure 9 shows additional qualitative outputs.
Once again, it can be seen how challenging the proposed
holistic segmentation setting is. As in the predictions of Fig-
ure 4, the model can distinguish most unknown objects. It
can be seen how specific areas of the images trigger higher
uncertainty estimates. This is the case of the fences in the
second and third images of Figure 9, as well as unknown ob-
jects not part of the OOD labels of Lost&Found, such as the
cart on the right of the bottom image, as previously men-
tioned. As previously seen, stuff structures (e.g., fences)
are assigned to a single coherent instance ID throughout the
whole image. At the same time, unusual objects (e.g., the
cart in the last picture) have their dedicated ID. Figure 9
also provides some examples of unusual scenes present in
the Lost&Found [18] dataset, posing significant challenges
compared to Cityscapes [7].

MS COCO Figures 10 and 11 show qualitative out-
puts of the proposed U3HS on the held out classes of
MS COCO [16]. The images report the vast diversity of
the dataset, ranging from outdoor scenes to indoor close-
ups. Remarkably, U3HS delivered precise segments for un-
known objects, correctly segmenting instances of individual
unknowns despite their similarity with other objects of the
same type in the same input, with reasonable estimations of
known classes too (Figure 10). Due to the difficulty of this
problem, only a handful of segments are perfect, leaving
room for improvements for known and unknown objects.
Thanks to its strong uncertainty estimation capabilities, the
proposed U3HS not only identified the held-out classes but
also other unknown objects which are not part of the set of
known classes, such as the rice cooker and the umbrella on
the right of Figure 11 in the third and bottom rows respec-
tively. This shows the efficacy of our method on a wide
variety of scenarios typical of the real world.

A.5.3 Failure Cases

MS COCO While the proposed U3HS delivers reasonable
estimates in various settings, from indoor to outdoor, the
problem at hand is highly challenging, and its predictions
are not perfect, as confirmed by the quantitative results. Fig-
ure 12 reports failure cases on a set of challenging samples
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Figure 10. Example predictions of the proposed U3HS on OOD data containing the held out classes of MS COCO [16]. Held out classes
(unseen unknowns) in the samples: frisbee, microwave, toothbrush, baseball bat, and bear. All samples are equally resized. Input,
embeddings, detected unknowns, and holistic output are shown.

of MS COCO. It can be seen that while U3HS identified
unknowns reasonably, it often missed those objects that are
part of the evaluated held-out categories. A series of issues
cause this. In some instances, the integrated uncertainty es-
timates could not fully discover the unseen unknowns, e.g.,
only partially detected for both refrigerators at the left of
the third and fourth rows. We also noticed systematic is-
sues with certain classes, such as keyboard, mouse (both in
the right of the fourth row), hot dog (in the fifth row), and

scissors (right of the last row). This could be attributed to
these objects being semantically relatively close to known
classes, such as sandwich for hot dog. Small objects were
hard to see and therefore ignored by our method. This is the
case of the toothbrush behind the cat in the last row of the
figure. U3HS also had difficulties telling apart from one an-
other very close and similar unknowns, e.g., the central fris-
bees in the right of the second row differing for the logo’s
color. However, it could successfully separate neighboring
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Figure 11. Example predictions of the proposed U3HS on OOD data containing the held out classes of MS COCO [16]. Held out classes
(unseen unknowns) in the samples: microwave, parking meter, stop sign, baseball bat, toothbrush, toaster, snowboard, fire hydrant, and
frisbee. Other unknown objects are included in the samples, such as the umbrella and the rice cooker (i.e., not part of the known classes).
All samples are equally resized. Input and detected unknowns are shown.

objects on multiple occasions, such as the containers on the
ground of the left image in the fourth row (not evaluated
in this experiment). Moreover, we noticed difficulties with
particularly unusual inputs and cluttered environments, e.g.,
on the left of the second row. With other inputs, the uncer-
tainty of U3HS was also triggered on known objects, such
as the dogs on the top right (albeit correctly separated into
two instances), or the cabinets on the right of the third row.

Since several held-out classes contained everyday kitchen-
related items (e.g., refrigerator, microwave, and toaster), or
typical desk objects (e.g., keyboard and mouse), the model
could see only a handful of kitchens and offices (i.e., those
images where none of these held out objects appeared),
which severely impacted its ability to handle these situa-
tions appropriately. This is a limitation of holding out sam-
ples from MS COCO, compared to using a dedicated sepa-
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Figure 12. Failure predictions of the proposed U3HS on OOD data containing the held out classes of MS COCO [16]. Held out classes
(unseen unknowns) in the samples: frisbee, keyboard, mouse, refrigerator, hot dog, toothbrush, and scissors. Other unknown objects are
included in the samples, such as bag and comb (i.e., not part of the known classes). All samples are equally resized. Input and detected
unknowns are shown.
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Figure 13. Failure predictions of the proposed U3HS on OOD data from the test set of Lost&Found [18], with a transfer from Cityscapes [7].
White arrows mark missed OOD objects as the estimated uncertainty was relatively low and filtered out.

rate dataset, such as Lost&Found [18]. Furthermore, given
that U3HS estimates the model uncertainty, more training
data covering a wider variety of scenarios could be benefi-
cial to further reduce the uncertainty on the known classes
and improve the known-unknown boundary of U3HS.

Lost&Found Figure 13 shows failure cases caused by
the necessary filtering of the uncertainty estimates. While
the uncertainty was triggered by a variety of unusual areas,
including the vast majority of unknown objects, its a pri-
ori filtering (based on closed-set training data, Section 4.2)
sometimes caused the unknown object to be completely un-
detected. Although this filtering is aimed at removing low
uncertainty areas which are probably in-domain (e.g., the
fence in the upper image), it could inadvertently remove
proper OOD objects (e.g., those marked by the white ar-
rows). This is related to the trade-off shown in Figure 7,
so keeping more unknowns (i.e., lower threshold t) reduces
the in-domain performance. Nevertheless, in the embed-
dings visualizations, the model correctly isolated the entire
marked box in the lower image and precisely segmented
the cardboard box in the upper one. However, the two un-
known objects were not detected, due to the difficulty of
merging multiple outputs and interpreting uncertainty esti-
mates without access to OOD data. It should be considered
that the proposed U3HS does not distinguish between the
uncertainty for unknown objects and that of unusual known
classes. The difference might lie in the amount of uncer-
tainty corresponding to these regions, hence the filtering via
the threshold t to attempt telling apart completely unknown
from unusual, which remains highly challenging without
using any information about unknowns at training time, as
in our setup.
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