
Appendix for paper Advancing Example Exploitation Can Alleviate Critical
Challenges in Adversarial Training

A. Illustration of A-C/R-C examples
We illustrate some A-C/R-C examples in Figure 7 and

Figure 8. Considering the visual representation, it can be
found that the features in R-C examples are more salient
than in A-C examples.

goldfish (A-C examples)

goldfish (R-C examples)

king penguin (A-C examples)

king penguin (R-C examples)

bullet train (A-C examples)

bullet train (R-C examples)

Figure 7: Illustration of A-C/R-C examples in TinyIma-
geNet dataset.

B. Other example-exploitation AT methods
B.1. Treatments of examples

In Table 3, we give the loss functions of some AT
methods. Most of them are implemented in two versions:
PGDAT-based or TRADES-based. We tend to select the

Table 3: The loss functions of different AT methods.

PGDAT:
CE (p (x′) , y)

TRADES:
CE(p(x), y) + λ ·KL (p(x)∥p (x′))
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TRADES-based implementations for disentangling the ac-
curacy and robustness. In the following, we analyze some
methods that appeared in Table 1 for their treatments.
SAT: Compared with TRADES, SAT keeps the KL term
unchanged but modifies the CE term for each example. Be-
sides replacing the original target of xi with tS

i , SAT also
reweights the CE term with factor wS

i (wS
i is small for xi

which is easily misclassified). These two schemes limit the
accuracy learning of the model for A-C examples.
MART: MART uses boosted cross-entropy (BCE) in-
stead of the commonly used CE loss: BCE(p(x′), y) =
− log(py(x

′)) − log(1 − maxk ̸=y pk(x
′)). Through

reweighting the KL term with the adaptive value 1−py(x)
(large for easily misclassified examples), MART enhances
the robustness learning of the model for A-C examples.
FAT: The only difference between FAT and TRADES is that
FAT generates different adversarial examples (x′F

i ) for train-
ing by using fewer attack iteration steps. The attacker needs
more steps for R-C examples than A-C examples to gener-
ate strong enough adversarial perturbations that lead to mis-
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Figure 8: Illustration of A-C/R-C examples in CIFAR10
dataset.

classification. So this operation will reduce the robustness
learning on R-C examples.
GAIRAT: GAIRAT reweights the PGDAT loss for each ex-
ample xi with the factor wG

i calculated by the geometry
value of xi. Generally, the geometry value of A-C exam-
ple is smaller than R-C example. So GAIRAT will assign a
larger weight for A-C example than for R-C example, which
means GAIRAT focuses the accuracy/robustness learning
on A-C examples. Although GAIRAT has great robustness
under PGD evaluation, some works find its robustness may

drop when evaluated on other attacks [4, 3].
TEAT: Like SAT, TEAT applies the temporal ensembling
approach to create the preferable target vector tT

i instead of
the original one-hot target. However, TEAT also uses tT

i

to generate adversarial examples during training, which has
a greater impact on A-C examples than on R-C examples
and causes a reduction in the robustness learning on A-C
examples.

B.2. Correlation with robustness condifdence

As introduced earlier for the main idea of various AT
methods, our robustness condifdence and their indicators
are related in design concept. Visually, we illustrate the cor-
relation between c and two metric, learning stability [2] and
geometry value [8] in Figure 9. Such positive and nega-
tive correlations demonstrate the utility of c in providing a
uniform analysis of example treatments across different AT
methods.
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Figure 9: Correlation of robustness confidence C with other
metrics: learning stability and geometry value. Every point
represents a training example. We normalize the metrics to
the range [0, 1].

C. Performance on A-C/R-C test examples
Here we further illustrate test results on A-C and R-C ex-

amples subsets. In Figure 10, we show the results of various
training methods, which can validate Table 1. Figure 11 is
the supplementary results for Figure 4.

D. More about the experiment
D.1. Detailed hyper-parameters

For all trials, the number of training epochs is 100. The
optimizer is SGD with 0.9 momentum and 2×10−4 weight
decay. The perturbation bound ε is 8 (pixel values in x
are within the range [0, 255]). For multi-step AT meth-
ods TRADES and TEAT, we use the step-style scheduler
to adjust the learning rate following their default settings.
Specifically, the learning rate is initially set to 0.1 and de-
cayed by 0.1 at epochs 50 and 75. The PGD iterations
for training and test are 10 and 20, respectively. The PGD
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Figure 10: Test curves of different AT methods. Dataset: CIFAR10. Model: PreActResNet-18. A-C and R-C examples
subsets contain 30% of the test examples with the smallest or largest C, respectively.
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Figure 11: Additional results of the experiments in Figure 4. A-C and R-C examples subsets contain 30% of the test examples
with the smallest or largest C, respectively.

step-size for training and test is 2/255. For single-step AT
methods FastAT and GradAlign, we use the cyclic-style
scheduler [7] with maximum learning rate 0.2 and mini-
mum learning rate 0. The PGD iterations for training and
test are 1 and 50, respectively. The PGD step-size for train-

ing and test is 10/255 and 2/255, respectively.

D.2. Quantitative results for trade-off comparisons

In addition to the multi-step AT method results presented
in the main paper, we present the evaluation results using



AutoAttack on different datasets (including TinyImageNet)
in Table 4. For the original methods, we set λ to 6 following
the default settings of TRADES and TEAT. For the updated
methods, we adjust λmin and λmax to align either the ac-
curacy or robustness with the original method, enabling a
more straightforward comparison. The results indicate an
improvement in both accuracy and robustness after apply-
ing our treatment.

Table 4: Test performance (%) of original and updated (de-
noted with ⋆) multi-step AT methods.

Dataset Method λ / λmin-λmax Acc Rob (Auto)

CIFAR10

TRADES 6 81.12 48.17
TRADES ⋆ 4-12 82.09 48.64

TEAT 6 82.65 48.23
TEAT ⋆ 4-10 83.35 48.71

CIFAR100

TRADES 6 54.73 23.10
TRADES ⋆ 5-8 55.51 23.42

TEAT 6 55.82 22.54
TEAT ⋆ 3-11 56.18 23.03

TinyImageNet

TRADES 6 51.35 19.12
TRADES ⋆ 4-9 51.40 20.58

TEAT 6 51.41 17.47
TEAT ⋆ 3-9 51.56 18.12

D.3. Ablation studies

In the application of our proposed treatment, the hyper-
parameters λmin and λmax for multi-step AT, and amin and
amax for single-step AT, determine the contribution of A-
C examples to accuracy and R-C examples to robustness.
We present the results of ablation studies for these hyper-
parameters in Table 5 and Table 6. These results align with
our earlier conclusions: smaller values of λmin/amin reduce
robustness learning on A-C examples, leading to improved
accuracy but decreased robustness. Conversely, larger val-
ues of λmax/amax enhance robustness learning on R-C ex-
amples, resulting in increased robustness but reduced accu-
racy. Nevertheless, our treatment effectively improve the
overall trade-off between accuracy and robustness.

D.4. Fewer training epochs for single-step AT

In the main paper, we demonstrated that FastAT encoun-
ters catastrophic overfitting when trained for 100 epochs.
However, if trained for fewer epochs, this issue can be
mitigated. In this setting, our treatment can also improve
the accuracy-robustness trade-off of FastAT, as illustrated
in Figure 12. Specifically, we evaluate a values of 2,
4, 6, 8, and 10, and (amin, amax) pairs of (1, 6), (3, 8),
(5, 10), (7, 12), and (9, 14). The updated FastAT consis-
tently achieves better either the robustness or accuracy than

Table 5: Test performance (%) of updated TRADES method
with different λmin, λmax. The robustness is evaluted by
PGD-20 attack.

Method Dataset λmin − λmax Accuracy Robustness

TRADES ⋆

CIFAR10

1-4 85.46 48.23
1-7 84.51 49.33
1-10 83.68 50.29
2-10 83.47 50.92
3-10 83.02 51.45
4-10 82.68 51.69

CIFAR100

1-3 59.13 24.21
1-5 57.91 25.97
1-7 56.72 26.94
2-7 56.52 27.24
3-7 55.93 27.43
4-7 55.65 27.82

Table 6: Test performance (%) of updated FastAT method
with different amin, amax. The robustness is evaluted by
PGD-50 attack.

Method Dataset amin − amax Accuracy Robustness

FastAT ⋆

CIFAR10

1-16 90.63 37.14
1-18 90.06 38.17
1-20 89.89 38.66
2-20 89.22 38.98
3-20 88.63 39.11
4-20 88.18 39.58

CIFAR100

1-10 64.28 15.27
1-12 63.64 16.55
1-14 62.82 17.43
2-14 62.45 17.65
3-14 60.96 17.72
4-14 60.53 17.81
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Figure 12: The trade-off comparison between original and
updated (denoted with ⋆) FastAT method after 30 epochs
of training on CIFAR10 dataset. The robustness is evalu-
ated using PGD-50 attack. To achieve better accuracy or
robustness, we vary the parameter a for the original FastAT
method and (amin, amax) for our updated version.

the original FastAT while maintaining the same level of ac-
curacy or robustness, respectively.
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Figure 13: Loss surfaces of some test examples. ℓ is the CE loss value. v1 is the direction of the adversarial perturbation
and v2 is the random direction. The purple (cyan) color indicates that the example at this position is misclassified (correctly
classified).

Table 7: Test performance (%) of Subspace AT on CIFAR10
dataset. For the Subspace AT method, we built the sub-
space using 60 epochs for single-step AT and 100 epochs
for multi-step AT. We then performed subspace-based train-
ing for 40 epochs.

Subspace Accuracy Robustness

Multi-step TRADES 78.11 51.63
TRADES ⋆ 78.46 52.74

Single-step FastAT 83.18 40.05
FastAT ⋆ 89.32 41.92

D.5. Update Subspace AT

From an optimization perspective, the Subspace AT
method improves both single-step and multi-step AT by
constraining AT in a carefully extracted subspace [5]. We
show that, when combining our treatment in building the
subspace, Subspace AT can achieve better performance in
both single-step and multi-step settings. The results are pre-
sented in Table 7.

E. No reliability on gradient obfuscation

We randomly select some test examples and show their
loss surfaces in Figure 13. The linearity illustrated by these
surfaces confirms that the robustness of models trained by
RCAT is not due to gradient obfuscation [1, 6].
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