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1. Details of our 53-dataset for continual learn-
ing and method performance

Fig. 1 shows a summary of the 53 datasets we used as the
continual learning benchmark in our main paper. The figure
also shows the detailed per-task accuracy of our methods
and baselines after learning all 53 tasks in the task incre-
mental continual learning setting.

2. Channel-wise linear reprogramming ability

To further understand the performance of channel-wise
lightweight reprogramming achieved by channel-wise lin-
ear transformation, we conduct qualitative experiments to
explore the ability of CLR layer to transfer the feature map
from a Pre-trained immutable parameter weight set (starting
point) to a target parameter weight set (goal).

Usually, the Pre-trained weight is not good enough due
to the domain gap between the Pre-trained dataset/learning
paradigm and the target dataset. And a relatively good per-
formance could be achieved by either finetuning the whole
backbone on the target dataset (FINETUNE) or learning
from scratch (randomly initialized backbone) on the tar-
get task dataset (SCRATCH). We will show that with the
help of a very cheap CLR layer, a feature map after a pre-
trained (non-optimal) model could be reprogrammed to-
wards a relatively optimal” feature map obtained by ei-
ther finetuning the whole backbone (FINETUNE) or train-
ing from scratch (SCRATCH).

We choose two datasets: CLEVR dataset and the
Kannada-MNIST dataset. Model performance on the
CLEVR dataset reaches 46.09% with a Pre-trained ResNet-
50 backbone + linear head, 97.66% with FINETUNE, and
91.41% with SCRATCH. In this scenario, pretrain has a
large accuracy gap with FINETUNE and SCRATCH. It
would be interesting to see if the CLR layer could repro-
gram a feature map obtained from pretrain towards a feature
map obtained by FINETUNE and SCRATCH, which shows
the ability of CLR layer to fill a large domain gap.

Model performance on the Kannada-MNIST dataset
reaches 95.77% with a Pre-trained backbone + linear head,
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99.62% with FINETUNE, and 100% with SCRATCH.
Here, SCRATCH performs better than FINETUNE, which
shows that the pretrained weights may have no benefit (or
even harmful) for target task learning. Here we want to
show that the CLR layer could reprogram a feature map
obtained from pretrain towards the feature map obtained
by SCRATCH. We use the feature map after the first con-
volutional layer in the different models (pretrain, FINE-
TUNE, and SCRATCH). Taking the feature map after the
pretrain model as input and the feature map after FINE-
TUNE (or SCRATCH) as output, we utilize a CLR layer
(3x3 2D depthwise convolutional kernels) to learn the map-
ping, i.e. the channel-wise linear transformation between
them. The qualitative results are shown in Fig. 2. Specif-
ically, in Fig. 2, we visualize the feature map that ini-
tially has a large initial gap between pretrain and FINE-
TUNE (or SCRATCH). The results show that after channel-
wise linear transformation, the feature after pretrain could
be reprogrammed towards the goal feature (FINETUNE or
SCRATCH)

3. Bootstrapping results

Fig.5 in the main paper shows the average accuracy
as more tasks are learned. However, the gradient of the
curve is also influenced by the order of the tasks (i.e., Hard
tasks located in earlier sequence will cause average accu-
racy tends to increase, while easy tasks located in earlier
sequence will cause average accuracy tends to decrease)
which is entangled with the effect of catastrophic forgetting.

We use bootstrapping to show the tendency of average
accuracy when more tasks are learned. Specifically, for any
number of tasks (¢t € (1, ..., 53)) that we want to conduct in
one continual learning setting, we randomly sample ¢ tasks
from the 53 tasks 50,000 times with replacement and com-
pute the mean accuracy (mean) and standard deviation (std).
Fig. 3 shows the Bootstrapping statistic results, which show
the change of mean and std when we increase the total num-
ber of tasks. The X-axis represents the task number ¢ we
want to conduct. For instance, if the continual learning task
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0 scenes o7 s0s2 536 | 69.22% 61.75% 36.19%
1 birds 200 5200 600 | 69.50% 62.17% 28.83%
2 wikiart 27 2531 243 | 47.33% 47.33% 28.81%
3 DescribableTextures 47 2538 235 | 64.68% 60.43%  36.60%
4 OfficeHome_Clipart 65 3307 408 | 85.54% 79.41%  58.09%
5 OfficeHome_Product 65 331 421 | 92.16% 85.75% 61.28%
6 OfficeHome_Art 65 1800 250 | 74.80% 60.40%  13.60%
7 Food-101 101 5151 505 | 55.45% 45.15% 15.05%
8 EuroSAT 10 2560 260 | 97.31% 96.15% 92.31%
9 HistAerial 7 2562 250 | 88.42% 84.17% 82.24%
10 Oriset_classification 3 2550 255 | 87.06% 81.96% 73.33%
1 Rice_Image_Datasct 5 2560 255 |100.00% 100.00% 100.00%
12 garbage_classification 12 2556 252 | 93.65% 89.68% 76.98%
13 PokemonData 150 4868 450 | 92.67% 89.78% 70.44%
14 Manga_Facial_Expressions 7 357 49 | 77.55% 57.14% 22.45%
15 oregon_wildlife 20 2560 260 | 83.85% 77.69% 43.08%
16 Blood_Cell_Dataset 4 2560 256 | 99.61% ©5.70% 98.44%
17 ocT2017 4 2560 256 | 94.53% 92.97% 90.63%
18 Cataract_Dataset 4 479 61 | 7377% 67.21% 63.93%
19 Apparel_Images_Dataset 2 2482 257 | 96.8%% 94.55% 89.11%
20 Zalando_Fashion_Dataset 5 2186 233 | 86.70% 81.97% 71.24%
2n House_Room_Images 5 2527 255 | 88.24% 81.57%  65.88%
2 UIUC_Sports_Event_Dataset 8 1258 160 | 08.75% 96.88%  88.13%
23 Yoga-82 80 5035 479 | 75.78% 65.97% 45.72%
2 UMNIST 20 435 65 |100.00% 100.00% 98.46%
2 electronic-components 36 2526 251 | 45.82% 39.04% 20.08%
26 Breast_Ultrasound 3 620 79 | 9114% ses1% 92.41%
27 boat-types-recognition 9 1054 129 | 89.15% 79.07% 60.47%
28 concrete-crack 2 2560 256 |100.00% 99.61% 100.00%
20 Malacea_Historical_Buildings 3 126 18 10000% 33.33% 33.33%
30 African_countries 4 2560 256 | B4I%  76.17% 73.44%
31 SurgicalTools 4 1607 201 | 9851% 99.00% 97.01%
32 Galaxy10 10 2560 260 | 72.31% 70.77% 61.15%
33 stanford_Online_Products 12 2556 252 | 73.41% 67.46% 4167%
34 NWPU-RESISC45 5 2565 270 | 84.81% 75.93% 57.04%
35 ilab8om-shell 15 2565 255 | 92.94% 8157% 74.12%
36 CLEVR v1.0 8 250 256 | 87.11% 70.31%  62.50%
37 CelcbA 5 2560 255 | 85.88% 80.39% 79.61%
38 Vegetable_images_Datasct 15 2565 255 | 99.61% 98.82% 95.29%
39 Monkey_Species 10 1007 130 | 99.23% 97.69% 80.77%
40 aptos2018 5 1650 182 | 73.63% 65.93% 61.54%
a1 freiburg_groceries_dataset 25 2488 250 | 82.40% 72.00% 57.60%
42 Weather_Type_Dataset 4 875 112 | 100.00% 98.21% 96.43%
43 Simpsons_Characters_Data 2 077 20 | 85.91% 7227% 67.73%
2 Hurricane_Damage_Dataset 2 2560 256 | 97.27% 96.88% 97.27%
45 Kannada-MNIST 10 2560 260 | 99.62% 98.08% 100.00%
46 dragon-ball-super-saiyan-dataset 5 112 18 | 93.44% 1667% 16.67%
47 ip02-dataset 102 5100 510 | 42.55% 37.45% 25.10%
48 planets-and-moons-dataset-ai-in-space 11 1307 165 | 100.00% 100.00% 100.00%
49 polish-craft-beer-labels 100 5060 500 | 100.00% 100.00% 100.00%
50 the-kvasircapsule-dataset 13 2113 219 | 93.61% 100.00% 100.00%
51 atari_shell 67 5082 536 |100.00% 100.00% 100.00%
52 deepup_shell 9 2556 252 | 88.40% 81.75% 85.71%
Average | 86.05% 78.28% 67.86%

Figure 1. Statistics of the datasets and per-task accuracy of our method and baselines after learning all 53 tasks
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1.12% 0.93% 2.43% 1.49% 1.31% 0.93% 0.83% 16.42%  76.68% 76.68%  65.49%
0.50% 0.33% 0.83% 0.50% 0.67% 0.17% 0.22% 8.33% 62.50% 67.00% 63.17%
2.88% 2.06% 2.47% 5.76% 2.47% 4.12% 1.94% 20.16% 56.79% 56.79%  45.27%
3.40% 1.70% 2.98% 2.55% 0.85% 2.55% 1.61% 20.00% 76.60% 76.60%  64.68%
1.47% 0.98% 1.47% 1.23% 1.96% 0.74% 0.86% 45.83% 84.31% 84.07% 80.39%
1.66% 0.95% 1.66% 1.90% 0.95% 1.90% 0.85% 42.04%  90.02% 91.45%  87.89%
1.20% 0.80% 0.80% 1.20% 2.40% 1.60% 0.80% 12.80% 68.80% 70.40% 64.40%
1.19% 0.59% 0.79% 1.19% 1.19% 0.99% 0.49% 7.33% 60.99% 62.18% 49.31%
10.38% 9.62% 6.92% 30.77% 14.23%  10.38% 9.51% 75.77%  97.31% 96.92%  96.92%
6.56% 10.42% 9.65% 16.60% 13.90%  12.36% 6.81% 67.95% 86.49% 90.35%  82.63%
19.22% 6.67% 10.20% 37.65%  26.67%  32.55% 6.57% 66.67%  88.24%  90.59%  80.39%
9.02% 21.18% 18.82% 21.18% 12.94% 10.20% 16.60% 92.55% 100.00% 100.00% 100.00%
7.54% 8.73% 7.14% 17.06%  11.90% 9.92% 8.63% 56.75% 93.65% 94.84% 94.05%
0.67% 0.89% 0.22% 5.33% 0.67% 1.33% 0.79% 41.11% 93.33% 95.11% 92.67%
14.29% 6.12% 6.12% 20.41% 12.24% 14.29% 6.02% 32.65% 65.31% 73.47% 61.22%
4.62% 3.85% 5.38% 10.00% 5.77% 5.77% 3.75% 24.23% 81.92% 85.00% 78.08%
3.28% 0.00% 11.48% 36.07% 28.52% 13.11% 0.00% 62.30% 98.44% 99.61%  98.83%
6.23% 2.72% 4.28% 10.12%  27.34% 5.45% 2.62% 75.88% 92.97% 92.58% 92.97%
16.74% 5.15% 9.44% 23.61%  49.18% 7.30% 5.04% 46.35%  73.77% 65.57%  68.85%
12.55% 5.10% 9.02% 23.92% 7.39% 21.57% 4.99% 40.39% 97.67% 97.28%  96.89%
15.00% 9.38% 14.37% 25.00% 20.17% 6.88% 9.28% 68.13% 87.12% 85.84%  83.26%
1.04% 1.04% 1.46% 1.67% 20.00% 0.84% 0.96% 13.99% 87.06% 89.02%  86.27%
4.62% 1.54% 4.62% 55.38%  16.25% 4.62% 1.44% 98.46% 98.75% 99.37%  98.12%
2.39% 1.20% 1.20% 4.38% 1.67% 3.98% 1.09% 21.51% 77.04% 75.37% 73.49%
7.59% 15.19% 6.33% 59.49% 1.54% 34.18%  12.04% 82.28% 100.00% 100.00% 100.00%
14.73% 13.18% 14.73% 29.46% 3.19% 15.50% 9.92% 42.64% 47.01% 50.60% 41.83%
19.53% 0.78% 0.00% 96.09% 56.96%  48.44% 0.69% 99.22%  89.87% 91.14% 93.67%
22.22% 27.78% 16.67% 72.22% 20.93% 33.33% 26.02% 100.00% 85.27% 86.05% 82.95%
15.23% 22.66% 10.94% 36.33% 48.83% 24.22% 19.51% 54.69% 100.00% 100.00% 100.00%
13.93% 9.95% 11.94% 40.80%  33.33%  24.88% 9.85% 80.10% 100.00% 100.00% 100.00%
11.92% 11.54% 8.85% 14.62%  33.98%  10.00% 8.38% 43.85% 82.81% 83.59% 82.03%
8.33% 8.73% 6.35% 12.70%  21.39%  13.49% 8.62% 23.41% 100.00% 100.00% 100.00%
2.59% 2.22% 3.33% 19.26% 7.69% 1.85% 2.12% 38.15% 71.54% 73.46% 73.08%
5.88% 7.84% 7.06% 24.71% 5.95% 7.84% 7.74% 48.24% 76.19% 77.38%  67.86%
12.11% 18.36% 11.72% 24.22% 2.22% 12.50%  15.34% 42.97% 88.52% 90.00% 82.59%
12.16% 7.84% 6.27% 43.92% 6.27% 17.25% 7.73% 69.80% 91.37% 94.12%  87.06%
9.02% 3.92% 3.92% 36.08%  12.50% 5.49% 3.81% 87.45%  73.83% 73.44% 63.67%
13.85% 8.46% 15.38% 35.38% 20.39% 10.77% 8.35% 50.77%  85.49% 83.92%  85.88%
6.64% 3.91% 13.67% 55.86% 9.80% 22.66% 3.82% 81.25% 100.00% 100.00% 100.00%
0.39% 4.30% 7.03% 36.72% 9.23% 23.44% 4.18% 64.84% 97.69% 99.23% 99.23%
10.99%  15.38% 6.59% 53.85%  25.27% 21.98% 11.04% 51.65% 69.78% 68.13% 66.48%
3.20% 4.00% 2.40% 15.20% 6.40% 4.00% 3.90% 35.60% 83.60% 88.80% 76.40%
19.64%  15.18% 18.75% 81.25% 40.18% 23.21% 12.98% 94.64% 97.32% 97.32% 99.11%
2.73% 3.18% 0.91% 20.00% 3.64% 3.18% 3.08% 50.00% 85.45% 85.00%  84.09%
1.17% 0.39% 0.39% 90.23%  56.25%  62.89% 0.30% 92.19% 96.48% 97.27% 97.27%
7.31% 11.92% 10.00% 98.08%  12.69% 9.23% 7.38% 98.85% 99.62% 99.62%  99.62%
22.22% 5.56% 16.67% 61.11% 16.67% 16.67% 5.45% 50.00% 66.67% 61.11% 66.67%
1.18% 0.59% 1.18% 9.22% 1.76% 0.59% 0.48% 16.67%  50.00% 50.00%  40.20%
9.09% 4.85% 9.09% 98.79% 9.70% 11.52% 4.74% 99.39% 100.00% 100.00% 100.00%
0.80% 1.60% 2.00% 94.20% 2.20% 0.40% 1.50% 97.00% 100.00% 100.00% 100.00%
7.76% 15.07% 7.76% 49.77%  10.50% 10.05% 11.97% 74.89% 93.15% 93.61% 90.41%
3.17% 12.31% 2.99% 99.44%  43.66% 0.37% 8.12% 98.88% 100.00% 100.00% 100.00%
82.94% 77.78% 83.73% 86.51% 82.14% 18.25% 75.28% 77.38% 83.73% 86.11% 86.90%
9.36% 8.23% 8.31% 34.91% 16.72% 12.48% 7.28% 56.69%  85.12% 85.77%  82.50%

in the continual learning

setting. Ablation columns indicate our methods with different initialization weights.

number =10, then we randomly sample 10 tasks from the
53-dataset and calculate the mean accuracy. We repeat the
sampling 50000 times and get the std. Y-axis shows the
mean Accuracy (solid blue line) on the sampled tasks with
replacement and std as the shaded light blue range. Since
in our CLR method, the order of task is not mattered (we
have the same performance on a specific task no matter the
sequence), this allows us to simulate what would happen if
we learn a different sample of tasks given a specific task
number ¢. We observe that the mean accuracy is stable and
not influenced by ¢ when the sample number is large. For
std, when the task number ¢ is small, the std is relatively
large, and the std decreases with task number ¢ increase.
When t=53, the std becomes zero.

Fig. 4 shows the Bootstrapping statistic results with de-
tailed max and minimum accuracy logs. The X-axis repre-
sents the number of tasks ¢ in a specific continual learning
task. Y-axis shows the mean Accuracy (solid blue line) on

the sampled tasks with replacement. The shaded light blue
range shows the min and max range in the given task num-
ber ¢ among 50000 times task samples. We use the solid
red line to represent our reported results in the main paper
Fig.5, which filled in the shaded light blue range.

4. More experiments to explore the trade-off
between parameter and performance

Several other versions of our method may include meth-
ods with higher accuracy but higher cost. Our main method
- CLR (the one in the paper) adds the CLR layer after all
the original convolutional kernels except for the 1x1 ker-
nels, saving many parameters.

CLR-Full version applying the CLR layer to all con-
volutional kernels in the pretrained model which reaches
85.85% in accuracy and cost 1.69x parameters compared
to our main method (CLR).

The CLR-Reduced version adds a smaller version of
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Figure 2. The Figure shows quantitative results of the CLR transformation ability on CLEVR and Kannada-MNIST datasets. We visu-
alize the feature maps in the first residual group of ResNet-50 that initially has a large initial gap between pre-train and FINETUNE (or
SCRATCH). The results show that after channel-wise linear transformation, the feature after pre-train could be reprogrammed towards the
goal feature (FINETUNE or SCRATCH). Pretrained indicates the frozen Imagenet pretrained ResNet-50 backbone. Finetune is a finetuned
ResNet-50 backbone with Imagenet pretrained initialization while Scratch is a trained ResNet-50 backbone with random initialization.
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Figure 3. Bootstrapping statistic results. The X-axis represents the number of tasks ¢ in a specific continual learning task. Y-axis shows the
mean Accuracy (solid blue line) on the sampled tasks with replacement and std as the shaded light blue range.
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Figure 4. Bootstrapping statistic results with detailed accuracy log. The X-axis represents the number of tasks ¢ in a specific continual
learning task. Y-axis shows the mean Accuracy (solid blue line) on the sampled tasks with replacement. The shaded light blue range shows
the min and max range in the given task number £. We use the solid red line to represent our reported results in the main paper Fig.5, which

filled in the shaded light blue range.

CLR layer with 1x1 2D reprogramming kernels after all
1x1 original Conv kernels and normal CLR layer with 3 x3
2D reprogramming kernels after the rest CONV kernels.
It reaches 85.7% in accuracy and costs 1.08 x parameters
compared to our main method (CLR).

The CLR-mixed version learns a weighted combination
of the original and our reprogrammed feature maps. The in-
tuition is that we keep some proportion of the original fea-
ture and add the new features learned after reprogramming.
Specifically, A trainable parameter A decides the weight of
the summation of the reprogrammed feature and the original
feature map. Equation 1 shows the details of the weighted

combination.
#'y, = Ax CLRy(z}) + (1 — A) x z}, )

where z) is the kth channel of the feature map from the
original Convolutional layer and C'L R is the correspond-
ing linear transformation. It reaches 86.25% in accuracy
and costs 1.79x parameters compared to our main method
(CLR).

The results are shown in Fig. 5. Theoretically, more
trainable parameters could lead to better performance, and
it is true for CLR-mixed version, which achieves +0.2%
than our main method. Interestingly, the CLR-full ver-
sion achieves lower average accuracy than the main method,



Method Average Acc

LwF 24%
iCARL 49%
RPS 57%
CCLL 85%
EWC 41%
SI 52%

CLR (Ours) 94.2%

Table 1. We applied our method on CIFAR-100 dataset with 10
tasks, each containing 10 classes with comparisons to baselines
from CCLL, using ResNet-18 as the backbone.

while most of the per-task accuracy is higher (43 out of 53
tasks).

5. Transfer learning with CLR-based model

We apply our CLR method to the transfer learning prob-
lem, where we only care about the accuracy of the trans-
ferred dataset while do not need to maintain performance
on previous datasets.

Datasets. We use the same 53-dataset to evaluate transfer
learning performance. Specifically, we use the ImageNet
pretrained ResNet-50 model as initialization and apply our
method and 4 baseline transfer learning methods 53 times,
on 53 different classification tasks.

Baselines. We have four baseline methods: 1) learn from
scratch (SCRATCH), where the backbone ResNet-50 is ran-
domly initialized with no prior knowledge, and then uses
the training set of each task to train the whole network
from scratch. 2) finetune the whole backbone and last layer
(FINETUNE), 3) finetune only the last layer (LINEAR), 4)
Head2Toe method [1] use the fixed backbone and need two
steps: 1) feature selection: train the model by adding a large
fully connection between all intermediate features and the
last layer and select the important connection by adding reg-
ularization. 2) keep the important skip connection and re-
train the added layers.

Fig. 6 shows the average accuracy on all 53 classifica-
tion tasks and the details of each task, and Fig. 7 shows the
detailed result for transfer learning. Our CLR achieves the
best average accuracy on the 53-dataset compared with all
baselines. Specifically, CLR achieves almost 5% average
improvement on 53 datasets over Head2Toe, and even larger
improvement over LINEAR, FINETUNE, and SCRATCH.
This shows the effectiveness of the CLR-based model in
transfer learning problems.

6. CIFAR-100 Result

We also show our method’s result on incremental
CIFAR-100 dataset with other previous baselines in table
1



Different Versions of Ours Different Versions of Ours

Task ID Task Name ClRFul O CR raskiD Task Name ClRFul O CLR-

Mixed Reduced Mixed Reduced
0 scenes 70.90% 73.88% 71.27% 27 boat-types-recognition 89.92% 89.92% 86.82%
1 birds 70.50% 71.00% 69.50% 28 concrete-crack 100.00% 100.00% 100.00%
2 wikiart 49.79%  50.21%  44.86% 29 Malacca_Historical_Buildings 100.00% 100.00% 100.00%
3 DescribableTextures 68.51% 71.91% 66.38% 30 African_countries 82.42% 82.81%  83.20%
4 OfficeHome_Clipart 86.03% 84.56% 85.78% 31 SurgicalTools 99.00% 100.00% 98.51%
5 OfficeHome_Product 91.45% 91.45% 91.45% 32 Galaxy10 75.38% 78.85%  75.00%
6 OfficeHome_Art 74.80% 74.40% 72.80% 33 Stanford_Online_Products 75.40% 76.59% 74.21%
7 Food-101 57.62% 60.00% 56.63% 34 NWPU-RESISC45 84.81% 87.41% 81.85%
8 EuroSAT 97.31% 97.69%  98.08% 35 ilab80m-shell 93.33% 91.76%  92.55%
9 HistAerial 88.80% 86.10% 88.42% 36 CLEVR v1.0 67.58% 069.53% 86.33%
10 OriSet_classification 87.06%  88.63%  85.88% 37 CelebA 85.88% 87.06% 87.84%
11 Rice_Ilmage_Dataset 100.00% 100.00% 100.00% 38 Vegetable_images_Dataset 100.00% 99.61% 99.61%
12 garbage_classification 095.63% 96.43%  94.05% 39 Monkey Species 99.23% 100.00% 99.23%
13 PokemonData 94.44%  94.44%  93.11% 40 aptos2019 69.78% 69.23%  71.43%
14 Manga_Facial_Expressions 77.55% 77.55% 75.51% 41 freiburg_groceries_dataset 84.40% 84.80% 81.60%
15 oregon_wildlife 84.23% 81.92% 81.92% 42 Weather_Type_Dataset 99.11% 99.11% 99.11%
16 Blood_Cell_Dataset 99.22%  99.22%  98.83% 43 Simpsons_Characters_Data 89.09% 89.09% 86.36%
17 0CT2017 95.70% 94.53% 92.58% 44 Hurricane_Damage_Dataset 97.66%  98.05%  97.66%
18 Cataract_Dataset 75.41% 72.13% 75.41% 45 Kannada-MNIST 100.00% 100.00% 99.62%
19 Apparel_Images_Dataset 99.22% 98.44% 97.67% 46 dragon-ball-super-saiyan-dataset 72.22% 83.33% 88.89%
20 Zalando_Fashion_Dataset 87.12% 85.41% 86.70% 47 ip02-dataset 44.71%  45.49%  42.55%
21 House_Room_lImages 89.02% 89.41% 89.41% 48 planets-and-moons-dataset-ai-in-space 100.00% 100.00% 100.00%
22 UIUC_Sports_Event_Dataset 98.75% 98.12% 98.12% 49 polish-craft-beer-labels 100.00% 100.00% 100.00%
23 Yoga-82 75.16%  77.24%  74.95% 50 the-kvasircapsule-dataset 05.43% 94.52% 94.06%
24 UMNIST 100.00% 100.00% 100.00% 51 atari_shell 100.00% 100.00% 100.00%
25 electronic-components 47.41%  48.21%  46.61% 52 deepvp_shell 85.71% 86.11% 88.49%
26 Breast_Ultrasound 97.47% 94.94% 91.14% Average 85.85% 86.25%  85.70%

Figure 5. Per-task accuracy of our main method and other versions of our method after learning all 53 tasks in the continual learning setting.
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Figure 6. Bar plot of transfer learning performance on 53-dataset.
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Task Name
scenes.
birds
wikiart
DescribableTextures
OfficeHome_Clipart
OfficeHome_Product
OfficeHome_Art
Food-101
EuroSAT
HistAerial
OriSet_classification
Rice_Image_Dataset
garbage_classification
PokemonData
Manga_Facial_Expressions
oregon_wildlife
Blood_Cell_Dataset
0CT2017
Cataract_Dataset
Apparel_Images_Dataset
Zalando_Fashion_Dataset
House_Room_lmages
UIUC_Sports_Event_Dataset
Yoga-82
UMNIST
electronic-components
Breast_Ultrasound

LINEAR
70.90%
64.00%
45.68%
68.51%
81.86%
92.87%
74.80%
53.27%
94.62%
85.33%
81.96%
98.82%
93.65%
78.89%
61.22%
84.23%
70.31%
79.69%
68.85%
89.49%
75.11%
86.67%
98.75%
44.26%
100.00%
48.61%
87.34%

Transfer Learning

SCRATCH
30.04%
23.50%
30.45%
30.64%
57.60%
61.05%
12.40%
16.83%
91.15%
81.47%
71.76%

100.00%
69.84%
69.11%
30.61%
38.46%
99.22%
92.97%
68.85%
92.22%
71.67%
54.51%
86.87%
37.79%

100.00%
23.90%
87.34%

FINETUNE Head2Toe TaskID

52.24% 75.75% 27
31.50% 61.83% 28
36.63% 53.09% 29
53.19% 74.47% 30
69.36% 84.56% 31
78.62% 93.35% 32
28.80% 75.60% 33
23.37% 57.23% 34
96.15% 95.77% 35
83.78% 86.49% 36
80.00% 87.06% 37
100.00%  99.22% 38
83.33% 95.63% 39
78.00% 84.22% 40
77.55% 55.10% 41
64.62% 86.15% 42
99.22% 76.56% 43
92.97% 81.25% 44
72.13% 68.85% 45
96.50% 96.11% 46
83.69% 75.97% 47
82.35% 85.49% 48
96.25% 98.13% 49
52.82% 52.82% 50
100.00%  100.00% 51
33.86% 48.21% 52
96.20% 88.61%

Task Name
beoat-types-recognition
concrete-crack
Malacca_Historical_Buildings
African_countries
SurgicalTools
Galaxy10
Stanford_Online_Products
NWPU-RESISC45
ilab80m-shell
CLEVR_v1.0
CelebA
Vegetable_images_Dataset
Monkey_Species
aptos2019
freiburg_groceries_dataset
Weather_Type_Dataset
Simpsons_Characters_Data
Hurricane_Damage_Dataset
Kannada-MNIST

dragon-ball-super-saiyan-dataset

ip02-dataset

planets-and-moons-dataset-ai-in-space

polish-craft-beer-labels
the-kvasircapsule-dataset
atari_shell
deepvp_shell
Average

LINEAR
91.47%
100.00%
100.00%
74.22%
97.51%
50.77%
73.41%
78.15%
87.06%
46.09%
74.12%
99.61%
100.00%
67.58%
80.00%
98.21%
55.45%
92.97%
95.77%
61.11%
44.71%
100.00%
100.00%
81.28%
100.00%
52.38%
78.90%

Transfer Learning

SCRATCH
62.02%
100.00%
100.00%
62.89%
95.52%
72.69%
32.14%
55.93%
77.25%
91.41%
76.86%
98.04%
75.38%
57.69%
60.80%
95.54%
70.00%
98.05%
100.00%
77.78%
19.61%
100.00%
99.60%
89.95%
100.00%
88.89%
69.59%

FINETUNE
72.87%
100.00%
100.00%
73.83%
98.51%
71.92%
53.97%
81.11%
83.92%
97.66%
80.78%
98.82%
94.62%
67.03%
78.00%
98.21%
87.73%
98.83%
99.62%
88.89%
22.16%
100.00%
100.00%
92.24%
100.00%
88.49%
78.72%

Head2Toe
84.50%
100.00%
100.00%
71.73%
97.51%
58.85%
74.60%
82.22%
90.59%
50.00%
78.43%
99.61%
100.00%
70.88%
82.00%
99.11%
61.36%
94.92%
98.85%
72.22%
45.88%
100.00%
100.00%
86.30%
100.00%
78.17%
81.53%

Figure 7. Transfer learning result on 53-dataset of our method and other baselines (LINEAR, SCRATCH, FINETUNE, and Head2Toe)
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