
Supplementary Material - CLR: Channel-wise Lightweight Reprogramming for
Continual Learning

Yunhao Ge1†, Yuecheng Li1∗, Shuo Ni1∗, Jiaping Zhao2 Ming-Hsuan Yang2, Laurent Itti1†
1University of Southern California 2Google Research

∗Equal contribution as second author, †correspondence to {yunhaoge, itti}@usc.edu

1. Details of our 53-dataset for continual learn-
ing and method performance

Fig. 1 shows a summary of the 53 datasets we used as the
continual learning benchmark in our main paper. The figure
also shows the detailed per-task accuracy of our methods
and baselines after learning all 53 tasks in the task incre-
mental continual learning setting.

2. Channel-wise linear reprogramming ability
To further understand the performance of channel-wise

lightweight reprogramming achieved by channel-wise lin-
ear transformation, we conduct qualitative experiments to
explore the ability of CLR layer to transfer the feature map
from a Pre-trained immutable parameter weight set (starting
point) to a target parameter weight set (goal).

Usually, the Pre-trained weight is not good enough due
to the domain gap between the Pre-trained dataset/learning
paradigm and the target dataset. And a relatively good per-
formance could be achieved by either finetuning the whole
backbone on the target dataset (FINETUNE) or learning
from scratch (randomly initialized backbone) on the tar-
get task dataset (SCRATCH). We will show that with the
help of a very cheap CLR layer, a feature map after a pre-
trained (non-optimal) model could be reprogrammed to-
wards a ”relatively optimal” feature map obtained by ei-
ther finetuning the whole backbone (FINETUNE) or train-
ing from scratch (SCRATCH).

We choose two datasets: CLEVR dataset and the
Kannada-MNIST dataset. Model performance on the
CLEVR dataset reaches 46.09% with a Pre-trained ResNet-
50 backbone + linear head, 97.66% with FINETUNE, and
91.41% with SCRATCH. In this scenario, pretrain has a
large accuracy gap with FINETUNE and SCRATCH. It
would be interesting to see if the CLR layer could repro-
gram a feature map obtained from pretrain towards a feature
map obtained by FINETUNE and SCRATCH, which shows
the ability of CLR layer to fill a large domain gap.

Model performance on the Kannada-MNIST dataset
reaches 95.77% with a Pre-trained backbone + linear head,

99.62% with FINETUNE, and 100% with SCRATCH.
Here, SCRATCH performs better than FINETUNE, which
shows that the pretrained weights may have no benefit (or
even harmful) for target task learning. Here we want to
show that the CLR layer could reprogram a feature map
obtained from pretrain towards the feature map obtained
by SCRATCH. We use the feature map after the first con-
volutional layer in the different models (pretrain, FINE-
TUNE, and SCRATCH). Taking the feature map after the
pretrain model as input and the feature map after FINE-
TUNE (or SCRATCH) as output, we utilize a CLR layer
(3x3 2D depthwise convolutional kernels) to learn the map-
ping, i.e. the channel-wise linear transformation between
them. The qualitative results are shown in Fig. 2. Specif-
ically, in Fig. 2, we visualize the feature map that ini-
tially has a large initial gap between pretrain and FINE-
TUNE (or SCRATCH). The results show that after channel-
wise linear transformation, the feature after pretrain could
be reprogrammed towards the goal feature (FINETUNE or
SCRATCH)

3. Bootstrapping results

Fig.5 in the main paper shows the average accuracy
as more tasks are learned. However, the gradient of the
curve is also influenced by the order of the tasks (i.e., Hard
tasks located in earlier sequence will cause average accu-
racy tends to increase, while easy tasks located in earlier
sequence will cause average accuracy tends to decrease)
which is entangled with the effect of catastrophic forgetting.

We use bootstrapping to show the tendency of average
accuracy when more tasks are learned. Specifically, for any
number of tasks (t ∈ (1, ..., 53)) that we want to conduct in
one continual learning setting, we randomly sample t tasks
from the 53 tasks 50,000 times with replacement and com-
pute the mean accuracy (mean) and standard deviation (std).
Fig. 3 shows the Bootstrapping statistic results, which show
the change of mean and std when we increase the total num-
ber of tasks. The X-axis represents the task number t we
want to conduct. For instance, if the continual learning task



Figure 1. Statistics of the datasets and per-task accuracy of our method and baselines after learning all 53 tasks in the continual learning
setting. Ablation columns indicate our methods with different initialization weights.

number t=10, then we randomly sample 10 tasks from the
53-dataset and calculate the mean accuracy. We repeat the
sampling 50000 times and get the std. Y-axis shows the
mean Accuracy (solid blue line) on the sampled tasks with
replacement and std as the shaded light blue range. Since
in our CLR method, the order of task is not mattered (we
have the same performance on a specific task no matter the
sequence), this allows us to simulate what would happen if
we learn a different sample of tasks given a specific task
number t. We observe that the mean accuracy is stable and
not influenced by t when the sample number is large. For
std, when the task number t is small, the std is relatively
large, and the std decreases with task number t increase.
When t=53, the std becomes zero.

Fig. 4 shows the Bootstrapping statistic results with de-
tailed max and minimum accuracy logs. The X-axis repre-
sents the number of tasks t in a specific continual learning
task. Y-axis shows the mean Accuracy (solid blue line) on

the sampled tasks with replacement. The shaded light blue
range shows the min and max range in the given task num-
ber t among 50000 times task samples. We use the solid
red line to represent our reported results in the main paper
Fig.5, which filled in the shaded light blue range.

4. More experiments to explore the trade-off
between parameter and performance

Several other versions of our method may include meth-
ods with higher accuracy but higher cost. Our main method
- CLR (the one in the paper) adds the CLR layer after all
the original convolutional kernels except for the 1×1 ker-
nels, saving many parameters.

CLR-Full version applying the CLR layer to all con-
volutional kernels in the pretrained model which reaches
85.85% in accuracy and cost 1.69× parameters compared
to our main method (CLR).

The CLR-Reduced version adds a smaller version of



Figure 2. The Figure shows quantitative results of the CLR transformation ability on CLEVR and Kannada-MNIST datasets. We visu-
alize the feature maps in the first residual group of ResNet-50 that initially has a large initial gap between pre-train and FINETUNE (or
SCRATCH). The results show that after channel-wise linear transformation, the feature after pre-train could be reprogrammed towards the
goal feature (FINETUNE or SCRATCH). Pretrained indicates the frozen Imagenet pretrained ResNet-50 backbone. Finetune is a finetuned
ResNet-50 backbone with Imagenet pretrained initialization while Scratch is a trained ResNet-50 backbone with random initialization.



Figure 3. Bootstrapping statistic results. The X-axis represents the number of tasks t in a specific continual learning task. Y-axis shows the
mean Accuracy (solid blue line) on the sampled tasks with replacement and std as the shaded light blue range.

Figure 4. Bootstrapping statistic results with detailed accuracy log. The X-axis represents the number of tasks t in a specific continual
learning task. Y-axis shows the mean Accuracy (solid blue line) on the sampled tasks with replacement. The shaded light blue range shows
the min and max range in the given task number t. We use the solid red line to represent our reported results in the main paper Fig.5, which
filled in the shaded light blue range.

CLR layer with 1×1 2D reprogramming kernels after all
1×1 original Conv kernels and normal CLR layer with 3×3
2D reprogramming kernels after the rest CONV kernels.
It reaches 85.7% in accuracy and costs 1.08× parameters
compared to our main method (CLR).

The CLR-mixed version learns a weighted combination
of the original and our reprogrammed feature maps. The in-
tuition is that we keep some proportion of the original fea-
ture and add the new features learned after reprogramming.
Specifically, A trainable parameter A decides the weight of
the summation of the reprogrammed feature and the original
feature map. Equation 1 shows the details of the weighted

combination.

x̂′
k = A ∗ CLRk(x

′
k) + (1−A) ∗ x′

k (1)

where x′
k is the kth channel of the feature map from the

original Convolutional layer and CLRk is the correspond-
ing linear transformation. It reaches 86.25% in accuracy
and costs 1.79× parameters compared to our main method
(CLR).

The results are shown in Fig. 5. Theoretically, more
trainable parameters could lead to better performance, and
it is true for CLR-mixed version, which achieves +0.2%
than our main method. Interestingly, the CLR-full ver-
sion achieves lower average accuracy than the main method,



Method Average Acc

LwF 24%
iCARL 49%

RPS 57%
CCLL 85%
EWC 41%

SI 52%
CLR (Ours) 94.2%

Table 1. We applied our method on CIFAR-100 dataset with 10
tasks, each containing 10 classes with comparisons to baselines
from CCLL, using ResNet-18 as the backbone.

while most of the per-task accuracy is higher (43 out of 53
tasks).

5. Transfer learning with CLR-based model
We apply our CLR method to the transfer learning prob-

lem, where we only care about the accuracy of the trans-
ferred dataset while do not need to maintain performance
on previous datasets.
Datasets. We use the same 53-dataset to evaluate transfer
learning performance. Specifically, we use the ImageNet
pretrained ResNet-50 model as initialization and apply our
method and 4 baseline transfer learning methods 53 times,
on 53 different classification tasks.
Baselines. We have four baseline methods: 1) learn from
scratch (SCRATCH), where the backbone ResNet-50 is ran-
domly initialized with no prior knowledge, and then uses
the training set of each task to train the whole network
from scratch. 2) finetune the whole backbone and last layer
(FINETUNE), 3) finetune only the last layer (LINEAR), 4)
Head2Toe method [1] use the fixed backbone and need two
steps: 1) feature selection: train the model by adding a large
fully connection between all intermediate features and the
last layer and select the important connection by adding reg-
ularization. 2) keep the important skip connection and re-
train the added layers.

Fig. 6 shows the average accuracy on all 53 classifica-
tion tasks and the details of each task, and Fig. 7 shows the
detailed result for transfer learning. Our CLR achieves the
best average accuracy on the 53-dataset compared with all
baselines. Specifically, CLR achieves almost 5% average
improvement on 53 datasets over Head2Toe, and even larger
improvement over LINEAR, FINETUNE, and SCRATCH.
This shows the effectiveness of the CLR-based model in
transfer learning problems.

6. CIFAR-100 Result
We also show our method’s result on incremental

CIFAR-100 dataset with other previous baselines in table
1



Figure 5. Per-task accuracy of our main method and other versions of our method after learning all 53 tasks in the continual learning setting.

Figure 6. Bar plot of transfer learning performance on 53-dataset.



Figure 7. Transfer learning result on 53-dataset of our method and other baselines (LINEAR, SCRATCH, FINETUNE, and Head2Toe)



References
[1] Utku Evci, Vincent Dumoulin, Hugo Larochelle, and

Michael C Mozer. Head2toe: Utilizing intermediate rep-
resentations for better transfer learning. arXiv preprint
arXiv:2201.03529, 2022. 5


