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1. Optimization and Additional Model Details

Optimization Details. We used Adam [2] as our optimizer.
For the first 5,000 iterations, the learning rate was linearly
increased from 0 to 5×10−4 using a warm-up strategy. Af-
ter that, we controlled it using the cosine decay schedule to
the minimum learning rate of 2.5 × 10−5. We trained each
model for 200,000 iterations, which took a total of 7 hours
on a single NVIDIA RTX3090Ti GPU. For the novel view
synthesis task, we trained each model for 1,000,000 iter-
ations over 80 hours using a smaller batch size with fewer
sampled rays on a single NVIDIA RTX3090Ti GPU. To en-
sure consistency with the reconstruction baselines, we used
single-image batching with 512 sampled rays for all recon-
struction tasks. For novel view synthesis, we used single-
image batching with 1024 sampled rays, limited to the GPU
memory, instead of 4096 × 4 as used in Ref-NeRF. On each
ray, we sampled 64 coarse points, 64 fine points, and 32
points to model the background, as in NeRF++ [9].

Network architecture. Our network architecture is simi-
lar to NeuS [7], comprising of a geometry network and a
radiance network to encode SDF and view-dependent ra-
diance, respectively. The geometry network parametrizes
the signed distance function and consists of 8 hidden lay-
ers with a hidden size of 256. Instead of ReLU, we used
Softplus with β = 100 for all hidden layers. We used a skip
connection [3] to connect the input with the output of the
fourth layer. The geometry network takes the spatial posi-
tion x of points as input and outputs the signed distances
to the object. In addition, the geometry network produces a
geometry feature with dimension 256, which is further used
as input to the radiance network to acquire view-dependent
radiance. The radiance network comprises 4 hidden layers
of size 256, which parametrize view-dependent radiance. It
takes as input the spatial position x, the normal vector n̂,
the reflection direction ωr, and the 256-dimensional geom-
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Figure 1. In the ground truth meshes (left) of ShinyBlender, there
are two layers. However, on multi-view images, the inner layer is
invisible. This means the completeness is biased, as most of the
points in the inner layer contribute to meaningless error (right).
Points with large errors are marked in red.

etry feature vector. We applied positional encoding with 6
frequencies to the spatial location x and 4 frequencies to the
view direction ωr.

2. Evaluation Details
Meshes. For the ShinyBlender [6] and Blender [3] datasets,
the ground truth meshes were exported from Blender files.
Due to the original models’ small scales with a radius
around 1, we exported them with a scale factor of 150. For
the fish from SLF [8] and the cans/corncho1 from Bag of
Chips [4], we increased the meshes’ sizes by 100 and 1000
times, respectively, resulting in similar scales for all ground
truth meshes. During training, we normalized the object to
a unit sphere. During inference, we transferred the meshes
to the original space to compute the Chamfer Distance.

Since the original meshes contain too few points, we up-
sampled the points in each triangle to obtain dense point
clouds for evaluation. Finally, the Chamfer Distance was
computed by
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Figure 2. Visualization of the reconstruction results by COLMAP
on the ShinyBlender dataset. COLMAP failed to reconstruct ob-
jects with reflective surfaces, as the multi-view consistency was
not plausible.

where the first term is used to test accuracy, and the sec-
ond term validates completeness [1]. S1 and S2 are the re-
covered point clouds upsampled from meshes and ground
truth dense point clouds, respectively. For the ShinyBlender
dataset, shown in Fig. 1, the ground truth dense point clouds
include two layers. However, the inner layer is invisible on
multi-view images and cannot be reconstructed, resulting in
a biased completeness, so only accuracy is reported.
Surface Normals. To compute the surface normal for a
pixel p, we compute the normals of sampled points along
the ray r derived from the SDF as follows:

n̂i =
∇f(xi)

||∇f(xi)||
. (2)

Then, the volume rendering procedure is performed to ag-
gregate these normals, forming a single surface normal:

n̂(r) =
N∑
i=1

Tiαin̂i. (3)

We used the normalized normals n(r) = n̂(r)
||n̂(r)|| for evalu-

ating MAE for all pixels.

3. Results of using training views
In the main text, we used original 200 test views for re-

construction training, here we show the results of using 100
training views for reconstruction training in Table 1. The
conclusion is similar to that obtained using the test views.

4. Detailed Results of Ablation Study
We reported the quantitative metrics (accuracy and

MAE) for each scene of ShinyBlender in Table 2.

5. Additional Results on diffuse materials
We also carried out experiments on non-reflective ob-

jects to show that reflection score will not cause perfor-
mance degradation of non-reflective objects, where DTU
scenes (i.e., scan55, scan83, scan105, scan106, scan114,
scan118) were used. The results are reported in Table 3.

6. Additional Results on scenes with both dif-
fuse and shiny materials

Previous reconstructed scenes are either shiny or diffuse
materials. To show the robustness of our method, we further
diverse the scenes with both diffuse and shiny materials.
Given that such scenes are uncommon in existing datasets,
besides materials for Blender dataset, we further employed
Blender to render multi-view images that combine helmet
for Shinyblender and hotdog from Blender. The compari-
son is presented in Fig. 9. Our method can reconstruct the
shiny objects better, while do not lead to performance drop
on diffuse materials.

7. Additional Visualizations

Visualizations of COLMAP. We visualized the recon-
struction results of COLMAP [5], an MVS-based method
on the Shiny Blender dataset, as shown in Fig. 2. COLMAP
fails to recover reflective surfaces, indicating that the multi-
view consistency is not reasonable in reflective scenes, lead-
ing to severe missing parts and artifacts.
Visualizations of ablation study. We visualized how the
reflection-aware photometric loss and reflection direction-
dependent radiance improve surface quality in Fig. 3. Due
to the reflective surfaces, the toaster is extremely challeng-
ing even for human perception. It is challenging to distin-
guish where the real surface lies. NeuS reconstructs the
toaster with severe missing parts due to reflection. “Ref-
Neus w/o Ref” reconstructs the surface with fewer missing
parts, indicating that reflection-aware photometric loss can
localize the reflective surfaces and alleviate the ambiguity.
Our full model, Ref-NeuS, achieves better reconstruction
results without missing parts.
Visualizations of Ref-NeuS. We present additional visu-
alization results of different objects in Fig. 4, Fig. 5, Fig.
6, and Fig. 7 to demonstrate the effectiveness of our Ref-
NeuS. Our Ref-NeuS achieves better reconstruction quality
compared to NeuS.
Visualizations of results on Hulk. The real-world ob-
jects used in our experiments were captured under strict
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Figure 3. Surface geometry and surface normals of ablation models on toaster of ShinyBlender.

Methods
helmet toaster car

Acc↓ MAE↓ Acc↓ MAE↓ Acc↓ MAE↓
Neus 0.92 0.88 3.34 2.73 0.72 1.08

Ref-NeuS 0.33 0.39 0.45 1.56 0.36 0.77
Table 1. Results of using training views for reconstruction training.

conditions in a lab-controlled environment. Differently, we
captured the Hulk with glossy surfaces using an iPad in a
natural environment, capturing both the object and its sur-
roundings with lighting illumination and ambient light. As
we captured the object with the iPad moving around it, the
light source may have been occluded, resulting in shadows
on the surfaces. We show the results in Fig. 8, we can still
achieve better performance than NeuS.

8. Running Time

We demonstrate that estimating the reflection score will
not significantly increase the running time. There are two
main steps that contribute to the increase in running time.
The first step involves the intermediate meshes. Since we
extract intermediate meshes with a resolution of 128, it only
takes approximately 0.35 seconds for each mesh extraction.
The second step involves projection and distance compu-
tation for visibility identification. To obtain pixel colors,
we project the predicted surface point onto visible source
images. This step does not incur notable extra computa-
tional cost, with only 0.012 seconds per step. In Table 4, we
present the total running time.

9. Failure Case

Figure 10 displays the reconstruction results of the cof-
fee object using ShinyBlender, which is a failure case of

our method. This object contains water surfaces that pos-
sess different reflection coefficients compared to solid ob-
jects. Merely substituting the dependency of the radiance
network with reflection direction, without considering the
object material, can result in artifacts. This motivates fu-
ture work on how to better model view-dependent radiance
while taking the material into consideration. However, in-
corporating reflection-aware photometric loss can still im-
proves the reconstruction quality over NeuS. We present the
results of “Ref-NeuS w/o Ref” for Ref-NeuS on the coffee
object of ShinyBlender.
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Method RS Vis Ref
helmet toaster coffee car mean

Acc MAE Acc MAE Acc MAE Acc MAE Acc MAE
NeuS 1.33 1.12 3.26 2.87 1.42 1.99 0.73 1.10 1.69 1.77

NeuS w/ RS ✓ 0.75 0.85 2.14 2.23 1.11 1.58 0.66 1.05 1.17 1.43
NeuS w/ Ref ✓ 0.41 0.69 0.59 1.59 3.87 2.74 0.55 0.97 1.36 1.50

Ref-NeuS w/o Ref ✓ ✓ 0.43 0.71 1.43 2.12 0.77 0.99 0.58 1.00 0.80 1.21
Ours (full) ✓ ✓ ✓ 0.29 0.38 0.42 1.47 0.77 0.99 0.37 0.80 0.46 0.91

Table 2. Detailed quantitative metrics of ablation study on Shiny Blender dataset.
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Figure 4. Qualitative comparison with NeuS on scan63 and scan 110 of DTU dataset.
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Figure 5. Qualitative comparison with NeuS on drums of Blender dataset.

GT NeuS Ref-NeuS
Figure 6. Qualitative comparison with NeuS on fish of SLF dataset.

NeuS Ref-NeuSGT
Figure 7. Qualitative comparison with NeuS on cans and corncho1 of Bag of Chips dataset.
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Figure 8. Qualitative comparison with NeuS on Hulk.

Figure 9. Comparison on scenes with both diffuse and shiny materials.
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Figure 10. A failure case on coffee of ShinyBlender.


