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This Appendix provides further details about ETran and
demonstrates further experimental results. In Section 1 and
2, we further evaluate ETran on target selection scenario
and also language models. In Sections 3-6, we provide a
theoretical and experimental analysis of classification, re-
gression, and energy scores of ETran. In 7, the fine-tuning
procedure and the resulting ground-truth validation scores
on all the benchmarks are provided, and in 8 limitations and
future work are discussed.

1. Target Selection Scenario
In the main body of the paper, following most of the pre-

vious works, we considered that M source models and a
target dataset are given and the transferability metrics tried
to rank the source models. Some of the previous works in-
cluding GBC [9] and LEEP [8] define a new scenario, where
a single source model and multiple target datasets are given
and the transferability metrics are used to rank the target
datasets. We call this scenario as target selection. Figure 1
shows an overview of the target selection scenario.

We use the classification benchmark [10] explained in
the main body to evaluate ETran’s performance compared
with the previous works on the target selection. Table 1
provides Kendall tau (τw) of the 11 source classification
models. ETran obtains an average τw of 0.545 over 11
models, while SFDA, PACTran, LogME, and LEEP obtain
an average τw of 0.376, 0.295, -0.020, and 0.224, respec-
tively. ETran outperforms SFDA by a relative improvement
of 45% in-terms of τw. Table 1 also shows that adding en-
ergy score (i.e., Sen) to the previous works improves their
results on most of the cases (e.g., τw of 0.433 vs. 0.376 for
SFDA).

2. Evaluation on Language Models
Experiments on other modalities are our future work. In

this section we show the preliminary results of our experi-
ments on the language models, where we use the RTE task
from GLUE benchmark [11] and 10 popular pre-trained lan-
guage models from HuggingFace (e.g., BERT, RoBERTa,

Figure 1: The overall framework of transferability estima-
tion in the target selection scenario. GivenM target datasets
and a source pre-trained model, the goal is to rank target
datasets according to the actual performance of the source
model after fine-tuning it on the target dataset.

BART, ALBERT, and DeBERTA). ETran, SFDA, and
LogME obtain a τw of 0.421, 0.391, and 0.138, respectively,
which shows the superiority of ETran compared to others.

3. Analysis of ETran’s Scores

In this section, we theoretically and experimentally an-
alyze the proposed LDA-based classification and SVD-
based regression scores compared with their peers includ-
ing SFDA-based classification [10] and LogME-based re-
gression [12] scores, respectively.

Before the analysis, we will first recap the intuition for
transferability scores. The transferability score measures
the compatibility between the extracted features and the
ground-truth labels.

More formally, each sample in the target dataset comes
from an underlying distribution D. To avoid costly fine-
tuning, it is assumed that the source model’s backbone is
frozen. The extracted feature f and its corresponding labels
y come from a feature distribution F , denoting as (f, y) ∼
F .

For classification, y is a scalar for the target (ground-
truth) class. For regression (specifically for the task of ob-
ject detection), y means the position and scale for bboxes.



Table 1: The performance of ETran compared with previous works for the target selection scenario on the classification
benchmark (in terms of Kendall tau τw).

Method Res34 Res50 Res101 Res152 Dens169 Dens121 Dens201 MNas Google Inception Mobilenet Average

LEEP [8] 0.253 0.314 0.330 0.314 0.143 0.157 0.127 0.242 0.159 0.263 0.157 0.224
LogME [12] -0.387 -0.081 -0.118 -0.101 0.241 -0.226 0.207 0.203 -0.191 0.03 0.203 -0.020
PACTran [4] 0.373 0.467 0.402 0.397 0.260 0.295 0.047 0.243 0.214 0.394 0.154 0.295
SFDA [10] 0.501 0.501 0.484 0.501 0.301 0.314 0.284 0.312 0.211 0.462 0.269 0.376
LEEP+Sen 0.333 0.244 0.349 0.410 0.260 0.218 0.296 0.143 0.087 0.191 0.038 0.233
LogME+Sen -0.387 0.053 0.113 0.005 0.306 -0.211 0.302 0.161 -0.259 0.150 0.241 0.043
PACTran+Sen 0.350 0.496 0.445 0.392 0.241 0.295 0.106 0.201 0.229 0.239 0.209 0.291
SFDA+Sen 0.604 0.624 0.678 0.612 0.276 0.387 0.256 0.271 0.192 0.496 0.371 0.433
ETran (Scls+Sen) 0.436 0.542 0.525 0.574 0.661 0.525 0.521 0.692 0.449 0.394 0.681 0.545

Table 2: Comparing LDA and SFDA on the classification benchmark based on τw. The self-challenging mechanism of SFDA
diminishes the performance on many datasets.

Method CIFAR10 VOC Caltech-101 AirCraft CIFAR100 Food-101 Pets Flowers Cars DTD Sun Average

SFDA [10] 0.849 0.518 0.555 -0.215 0.793 0.427 0.340 0.590 0.312 0.633 0.722 0.502
LDA (Scls) 0.842 0.521 0.354 -0.146 0.869 0.754 0.713 0.357 -0.006 0.303 0.616 0.470
SFDA + Sen 0.890 0.606 0.558 -0.161 0.856 0.370 0.422 0.406 0.328 0.639 0.744 0.514
LDA (Scls) + Sen 0.887 0.667 0.440 -0.091 0.900 0.829 0.713 0.580 0.246 0.303 0.708 0.562

Table 3: Comparing LDA and SFDA on object detection
benchmarks.

VOC-FT COCO HF
Pr(top3) τw Pr(top3) τw Pr(top3) τw

SFDA [10] 0.250 0.108 0.533 0.104 1.000 0.312
LDA (ours) 0.286 0.141 0.533 0.131 0.800 0.376

Since it is natural that separate weights are leveraged for
predicting each component of position and scale, they can
be treated independently for transferability score.Thus, for
simplicity, y here is a scalar for one component of position
and scale.

From distribution F , we have K samples (i.e., bboxes
for object detection) and their corresponding labels, i.e.,
(f, y) ∼ F K . Here, f ∈ RK×ĥ is the extracted feature
matrix. y ∈ RK is the labels of samples. Given f and y,
the transferability score measures the compatibility between
the feature and label. We say they are compatible if there
exists a mapping from feature space to label space and this
mapping is accurate for the feature and label pair from F .
To conclude, the transferability score of a source model to-
wards D is measured by the generalization performance of
the mapping on F .

There are two challenges: 1) After fine-tuning the source
model, feature distribution F drift. The transferability score
fails to compensate for this. 2) The generalization per-
formance is defined on distribution F , however, only K
samples from distribution are available. Thus, it matters
whether the estimation of the transferability score is tight
or vacuous. Motivated by these two challenges, LDA-

based classification and SVD-based regression scores are
proposed. We will give a detailed analysis in the following
sections.

Note that for the simplicity and generality of our method
on different benchmarks, the three transferability scores in
Eq. ?? are normalized between [0,1] and equally summed.
Based on our initial study, having different weights for the
normalized three terms does not significantly affect the final
results. It is a common practice to use fixed hyperparame-
ters for generality (i.e., PACTran [4]).

4. Energy Score vs. Classification Score.
As studied in [1, 2, 3, 7], the softmax score for a classi-

fier, Φ with C classes, is defined as:

max
y
p(y|x) = max

y

eΦ(y)(x)∑C
c e

Φ(c)(x)
=

eΦmax(x)∑C
c e

Φ(c)(x)
. (1)

If we take the logarithm of both sides we have:

log max
y
p(y|x) = Φmax(x)− log

C∑
c

eΦ(c)(x)

= Φmax(x) + E(x). (2)

Therefore, the log of softmax confidence score is in fact
energy score shifted with the maximum value of logits.
Since Φmax(x) tends to be higher and E(x) (Eq. 5 in
the paper) tends to be lower for in-distribution samples, the
softmax confidence score is a biased scoring function that is



Table 4: Comparing LogME and SVD-based regression
scores on object detection benchmarks.

VOC-FT COCO HF
Pr(top3) τw Pr(top3) τw Pr(top3) τw

LogME (Slmr) [12] 0.357 0.356 0.400 0.113 0.800 0.400
SVD-reg (Sreg) 0.393 0.357 0.400 0.122 0.800 0.512

no longer proportional to the probability density p(x). Hav-
ing E(x) from Eq. 6 in the main body of the paper, we can
write Eq. 2 as:

log max
y
p(y|x) = − log p(x) + Φmax(x)− logZ︸ ︷︷ ︸

not constant, larger for in-dist x

.

(3)
Thus, unlike the energy score (as proved in section 3.3 of the
paper), the softmax classification score is not well-aligned
with p(x) [2, 7], which makes it less reliable for out-of-
distribution detection and transferability assessment.

5. LDA-Based Classification Score vs. SFDA

The feature distribution F shifts from the source to the
target dataset after fine-tuning. The features f extracted by
the pre-trained models are separable based on the source
dataset’s classes. However, after fine-tuning, the features
are separable based on the target dataset’s classes. To
mitigate feature distribution shifts, we propose to use an
LDA-based classification score. Linear discriminant analy-
sis (LDA) projects the features into a space that is separable
w.r.t the target classes. This coincides with the feature from
fine-tuned model and thus mitigates the distribution shift.

Compared to our LDA-based score, SFDA [10] has a
self-challenging mechanism, which has two drawbacks: 1)
The practical computational cost of SFDA is almost twice
LDA, which is because the self-challenging mechanism per-
forms Linear Discriminate Analysis twice on all the sam-
ples. 2) The self-challenging mechanism also introduces
noise on the features, which can negatively affect the deep
connection between the discriminative and energy-based
models, i.e., the linear alignment of the calculated nega-
tive free energy with the likelihood function (as discussed
in Section 3.3 of the paper).

As summarized in Table 2, SFDA overally performs a
bit better than the LDA-based score (i.e., Scls) on the clas-
sification benchmark. However, when integrated with the
proposed energy score (i.e., Sen), LDA archives a better per-
formance. Table 3 also compares the performance of LDA
vs. SFDA on the object detection benchmarks, which shows
that LDA outperforms SFDA on three benchmarks in terms
of τw.

Figure 2: LogME’s assumption analysis. Blue: the his-
togram of practical weights. Orange: the weights distribu-
tion with optimal α. Weight distribution comes from differ-
ent pairs of source models and target datasets in the VOC-
FT benchmark.

6. SVD-Based Regression Score vs. LogME

We will first recap the LogME score, analyze its prob-
lem, and then propose our solution. LogME assumes that
the weights of a linear model that maps from feature space
to label space ŷ = w>f , have a normal distribution as fol-
lows: w ∼ N (0, α−1I). The prior of weights, α, is opti-
mized on target features, f . Then, the log marginal likeli-
hood (i.e., evidence) of observing f given ground-truth la-
bels y is used to measure the generalization performance of
the pre-trained source models [12].

If the assumption w ∼ N (0, α−1I) matches the actual
feature data, the LogME score measures the generalization
performance tightly. But if not, LogME will deviate from
actual performance. In practice, there are many cases
where the assumption of LogME does not hold.

In order to evaluate the assumption of LogME, we calcu-
late the optimal α using LogME and compare N (0, α−1I)
with the practical weight distribution of the last-layer
weights of the fine-tuned models in the VOC-FT bench-
mark. The comparison is illustrated in Figure 2. The first
row in Figure 2 shows the successful cases that the practical
weights follow Gaussian, where LogME finds the optimal
α. However, as shown in the second row, there are cases
that the practical weights cannot be described by Gaussian
distribution. To this end, if the model’s hypothesis space is
limited, the derived transferability metric will be a vacuous
bound of the model’s actual performance.

In our SVD-based regression method, we relax the as-
sumption, resort to SVD-based linear regression, and derive
the transferability metric. We verified that this strategy is
effective in practice. This simple strategy first finds the op-
timal mapping by solving best w∗ for arg minw ‖y−fw‖2
and then measures the performance by negative remaining



Table 5: The fine-tuning accuracy (map50) of pre-trained models on VOC-FT benchmark. The best and the second-best
pre-trained source models for a given target dataset are shown in bold and underlined, respectively.

Source Models
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ta
rg

et
D

at
as

et
s

1 0.28 0.33 0.31 0.36 0.34 0.33 0.35 0.33 0.29 0.33 0.35 0.32 0.35 0.33 0.32 0.32 0.33 0.36 0.32
2 0.30 0.33 0.33 0.36 0.34 0.33 0.34 0.33 0.29 0.31 0.38 0.33 0.34 0.33 0.34 0.34 0.34 0.37 0.32
3 0.38 0.46 0.43 0.52 0.46 0.47 0.49 0.47 0.44 0.42 0.49 0.46 0.47 0.47 0.47 0.43 0.48 0.50 0.46
4 0.33 0.36 0.39 0.41 0.37 0.38 0.40 0.40 0.35 0.33 0.41 0.36 0.40 0.40 0.38 0.36 0.37 0.42 0.37
5 0.47 0.50 0.48 0.53 0.51 0.50 0.50 0.48 0.49 0.47 0.51 0.48 0.51 0.49 0.49 0.49 0.49 0.54 0.51
6 0.48 0.49 0.49 0.55 0.48 0.51 0.52 0.51 0.48 0.46 0.51 0.49 0.51 0.51 0.51 0.46 0.51 0.52 0.49
7 0.45 0.45 0.46 0.51 0.49 0.48 0.49 0.46 0.44 0.44 0.53 0.45 0.48 0.50 0.51 0.45 0.51 0.51 0.47
8 0.24 0.31 0.29 0.33 0.31 0.32 0.32 0.29 0.24 0.28 0.33 0.29 0.33 0.31 0.31 0.32 0.33 0.33 0.33
9 0.41 0.47 0.46 0.48 0.48 0.50 0.48 0.45 0.40 0.42 0.47 0.42 0.48 0.45 0.49 0.46 0.47 0.50 0.47
10 0.27 0.32 0.35 0.36 0.34 0.34 0.37 0.37 0.28 0.32 0.35 0.32 0.35 0.32 0.35 0.32 0.34 0.36 0.33
11 0.46 0.49 0.50 0.51 0.49 0.48 0.47 0.51 0.47 0.49 0.51 0.46 0.49 0.49 0.50 0.51 0.49 0.53 0.49
12 0.44 0.51 0.49 0.49 0.50 0.51 0.50 0.50 0.45 0.48 0.50 0.45 0.50 0.49 0.50 0.48 0.49 0.52 0.51
13 0.38 0.44 0.47 0.49 0.44 0.44 0.44 0.47 0.38 0.41 0.47 0.44 0.46 0.43 0.46 0.42 0.47 0.46 0.44
14 0.42 0.46 0.43 0.47 0.47 0.47 0.46 0.47 0.41 0.40 0.49 0.43 0.47 0.47 0.49 0.44 0.47 0.47 0.47
15 0.30 0.34 0.34 0.35 0.35 0.33 0.34 0.33 0.29 0.32 0.37 0.31 0.33 0.33 0.35 0.33 0.35 0.37 0.34
16 0.50 0.51 0.51 0.52 0.52 0.50 0.49 0.50 0.49 0.51 0.51 0.49 0.51 0.50 0.51 0.51 0.51 0.53 0.52
17 0.45 0.51 0.48 0.51 0.49 0.49 0.49 0.49 0.45 0.48 0.51 0.46 0.51 0.50 0.50 0.48 0.49 0.50 0.50
18 0.37 0.41 0.41 0.44 0.42 0.43 0.39 0.41 0.36 0.37 0.43 0.41 0.42 0.43 0.43 0.40 0.43 0.43 0.41
19 0.50 0.52 0.51 0.54 0.53 0.57 0.53 0.54 0.50 0.50 0.56 0.51 0.53 0.53 0.57 0.49 0.50 0.56 0.56
20 0.59 0.61 0.60 0.63 0.62 0.63 0.62 0.61 0.59 0.61 0.60 0.57 0.62 0.59 0.61 0.60 0.61 0.64 0.61
21 0.49 0.55 0.49 0.51 0.50 0.54 0.53 0.52 0.47 0.47 0.56 0.49 0.54 0.53 0.48 0.47 0.49 0.55 0.50
22 0.55 0.61 0.56 0.62 0.60 0.63 0.61 0.61 0.54 0.56 0.63 0.60 0.63 0.60 0.64 0.59 0.59 0.61 0.61
23 0.51 0.53 0.52 0.55 0.53 0.53 0.53 0.52 0.51 0.51 0.54 0.49 0.52 0.52 0.53 0.54 0.52 0.54 0.52
24 0.55 0.54 0.55 0.60 0.55 0.58 0.58 0.56 0.55 0.55 0.59 0.53 0.59 0.57 0.60 0.53 0.54 0.58 0.60
25 0.47 0.44 0.47 0.54 0.47 0.50 0.51 0.51 0.42 0.46 0.53 0.46 0.52 0.48 0.52 0.46 0.51 0.55 0.51
26 0.65 0.68 0.66 0.69 0.67 0.68 0.68 0.67 0.66 0.66 0.68 0.67 0.69 0.67 0.67 0.68 0.67 0.68 0.69
27 0.57 0.14 0.56 0.60 0.58 0.58 0.58 0.58 0.55 0.57 0.59 0.54 0.57 0.58 0.60 0.58 0.59 0.58 0.57
28 0.58 0.64 0.62 0.69 0.63 0.65 0.66 0.65 0.60 0.61 0.68 0.60 0.66 0.63 0.66 0.62 0.64 0.68 0.63

Table 6: The fine-tuning accuracy (map50) of pre-trained models on COCO benchmark. The best and the second-best
pre-trained source models for a given target dataset are shown in bold and underlined, respectively.

Target Datasets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

So
ur

ce
M

od
el

s

1 0.344 0.445 0.281 0.177 0.593 0.524 0.608 0.425 0.342 0.263 0.430 0.141 0.305 0.440 0.319
2 0.373 0.489 0.304 0.194 0.632 0.556 0.588 0.432 0.334 0.277 0.415 0.183 0.343 0.458 0.344
3 0.340 0.481 0.311 0.171 0.573 0.534 0.559 0.412 0.334 0.249 0.403 0.171 0.306 0.452 0.354
4 0.353 0.482 0.278 0.172 0.614 0.523 0.533 0.406 0.311 0.252 0.412 0.161 0.346 0.460 0.385
5 0.338 0.462 0.283 0.186 0.600 0.543 0.580 0.385 0.310 0.237 0.392 0.159 0.328 0.450 0.352
6 0.355 0.512 0.304 0.189 0.638 0.547 0.526 0.419 0.310 0.259 0.413 0.181 0.322 0.464 0.358
7 0.353 0.479 0.324 0.202 0.636 0.515 0.585 0.407 0.330 0.255 0.412 0.173 0.327 0.473 0.389
8 0.355 0.493 0.300 0.181 0.635 0.535 0.555 0.424 0.319 0.303 0.422 0.158 0.330 0.484 0.384
9 0.365 0.471 0.290 0.186 0.616 0.524 0.548 0.402 0.333 0.248 0.400 0.157 0.400 0.449 0.364

error−‖y−fw∗‖. To prevent overfitting, a more advanced
way is to split f into train and test sets by a 7:3 ratio and
evaluate performance on the test set.

Considering f is near rank-deficient and may be ill-
conditioned (the bottom-level singular value is close to
zero), we apply truncated SVD to obtain w∗. With SVD
decomposition f = Udiag(s)V>, w∗ = Vdiag(ŝ)−1U>,
where diag(ŝ) is the truncated singular values whose top
80% is preserved. With SVD, we approximately solve the
linear regression in a way that it is less sensitive to errors
and more effective for ill-conditioned matrices. Moreover,

the complexity of our proposed regression score isO(nĥ2).
It is more efficient compared to LogME’s

O
(
nĥ2 + ĥ3 + t(ĥ2 + nĥ)

)
, where t is the iteration

for LogME to converge and n is the number of samples in
the dataset. Since the tailing singular value is truncated,
the practical run-time of our proposed score will be further
reduced.

Table 4 shows the performance of LogME (i.e., Slmr) vs.
our SVD-based regression (i.e., Sreg) on the object detection
benchmarks. As seen by the results, the proposed SVD-
based regression outperforms LogME on all three bench-



Table 7: The fine-tuning accuracy (map50) of pre-trained
models on HuggingFace benchmark. The best and the
second-best pre-trained source models for a given target
dataset are shown in bold and underlined, respectively.

NFL Blood CSGO Forklift Valorant
Yolov5s [5] 0.261 0.902 0.924 0.838 0.982
Yolov5m [5] 0.314 0.905 0.932 0.852 0.990
Yolov5n [5] 0.217 0.923 0.908 0.789 0.959
Yolov8s [6] 0.279 0.917 0.886 0.851 0.971
Yolov8m [6] 0.287 0.927 0.892 0.846 0.965
Yolov8n [6] 0.209 0.893 0.844 0.838 0.937

marks in terms of τw and Pr(top3).

7. Fine-Tuning and Ground-Truth Results
The ground-truth ranking of the pre-trained source mod-

els is obtained by fine-tuning each of the source models on
all the target datasets. In this section, we provide the de-
tails of the fine-tuning procedure for object detection and
classification benchmarks.

VOC and COCO. For the VOC and COCO bench-
marks, we first train Yolov5s [5] on each of the source
models for 300 epochs. The pre-trained source models are
then fine-tuned on the train set of the target datasets for 60
epochs. Tables 5 and 6 show the map50 of the fine-tuned
models on the validation set of the target datasets. The best
and second-best pre-trained source models for a given target
dataset are shown in bold and underlined, respectively.

HuggingFace. We use 6 object detection models in-
cluding: YOLOv5s, YOLO5m, YOLOv5n [5], YOLOv8s,
YOLOv8m, and YOLOv8n [6]. All the models were pre-
trained on the COCO dataset using the default setting [5, 6].
Table 7 provides the map50 of the source models after fine-
tuning on the target datasets.

Classification. The source models were pre-trained on
ImageNet and were downloaded from the Pytorch reposi-
tory. The accuracy of the models after fine-tuning on the
target datasets was obtained from SFDA [10]. SFDA [10]
provides details of fine-tuning on each of the target datasets.
Table 6 in the appendix of the SFDA paper shows the accu-
racy of the pre-trained models after fine-tuning on each of
the target datasets.

8. Limitations
We have briefly discussed the limitations in Section 4.1

of the main body. Fig. 4 of the main body shows two fail-
ure cases where the energy score does not always correlate
positively with the accuracy of the target dataset. In this
section, we further discuss the limitations of our work that
need to be addressed in future work including: 1) In all 4
benchmarks, source models differ either in their architec-
tures or source datasets. It will be comprehensive to further

validate considering both.
2) The stability of our method w.r.t the small perturbation

on the target dataset and source pre-trained models needs to
be studied further. 3) In all scenarios, both source and tar-
get tasks were identical, e.g., both aimed for classification
tasks. The stability of the method, when source and target
tasks differ, should be investigated. 4) Experiments on other
modalities such as language models.
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