
Appendix of SHACIRA - Scalable HAsh-grid Compression
for Implicit Neural Representations

Sharath Girish
University of Maryland
sgirish@cs.umd.edu

Abhinav Shrivastava
University of Maryland
abhinav@cs.umd.edu

Kamal Gupta
University of Maryland
kampta@cs.umd.edu

1. Probability models
We define the probability models similar to [1]. The un-

derlying probability density of the latents Q̂ is defined by
its Cumulative Density Function (CDF) c : R → [0, 1],
with the constraints:

c(−∞) = 0, c(∞) = 1,
∂c(x)

∂x
≥ 0 (1)

This is represented using MLPs which take in a real val-
ued scalar and output a CDF value between 0 and 1. Each
dimension in Q̂ is represented by a separate model. To
satisfy the monotonicity constraint, [1] use a combination
of tanh and softplus activations for each layer of the MLP.
A sigmoid activation is used at the final layer to constrain
the CDF between 0 and 1. To model the true distribu-
tion, the standard uniform distribution n ∼ U [−0.5, 0.5] is
convolved with the density model to derive the Probability
Mass Function (PMF) of the latents as

Pd(x) = c

(
Q̂d +

1

2

)
− c

(
Q̂d −

1

2

)
(2)

The entropy regularization loss is then the self information
loss given by

LI(Q̂) = − 1

T

D∑
d=1

T∑
i=1

log2 (Pd(x)) (3)

2. Experimental settings
The latent dimension is set to 1 for images and video

and 2 for 3D experiments. The feature dimension obtained
after decoding the latents is set to 1 for Kodak and UVG-
F, 2 for high resolution (giga-pixel) images and UVG for
videos, and 4 for 3D experiments. Since we do not com-
press MLP weights but include their floating-point size in
our PSNR-BPP tradeoff calculation, we vary the hidden di-
mension according to the signal resolution. For images, we
set the dimension to be 16 for Kodak, 48 for UVG-F and
SMACS, and 96 for the remaining high-resolution images.

For videos and 3D, we set the layer size to 128. The num-
ber of layers is fixed to 2 for all cases. Note that higher
layer size generally leads to better PSNR at the cost of a
proportionally higher BPP but further gains can be obtained
by compressing these weights as well. This is orthogonal to
our direction of compression of the feature grid itself.

For all our experiments, we initialize the decoder pa-
rameters with a normal distribution N (0, 0.1), latents with
U(−0.01, 0.01), MLP weights with the Xavier initializa-
tion [2], and probability model parameters as in [1].

We use the Adam optimizer for jointly optimizing all
network parameters. We set the learning rate of MLP pa-
rameters to be 1.0e−3 for Kodak and 5.0e−4 for all other
experiments. The learning rate for the probability mod-
els is fixed at 1.0e−4 following [3]. The decoder learning
rate is set to 0.01 for images, video and 0.1 for 3D exper-
iments. We set the learning rate of the latents to be 0.01
for Kodak, UVG-F, and UVG, 0.05 for 3D, and 0.1 for the
other higher-resolution images. We observe that the train-
ing is not very susceptible to variations in the initialization
or learning rates and the values are obtained from a coarse
search for each signal domain.

3. Sensitivity Analysis

In this section, we analyze the effect of various compo-
nents of our pipeline. We pick the Jockey image (1080 ×
1920) from UVG-F as the benchmark for our analysis. We
set the default values of entropy regularization to 1.0e−4,
latent and feature dimensions to 1 each, MLP width to 48,
MLP depth to 2, and annealing period to 0.95. Each sub-
section below analyzes varying a single parameter while
keeping others fixed to their default values. For the anal-
ysis, we compare tradeoff curves by increasing the number
of entries from 213 to 217 in multiples of 2 which provides
a natural way of increasing the number of parameters and
subsequently the PSNR and BPP. Note that better tradeoff
curves indicate shifting upwards (higher PSNR) and to the
left (lower BPP).
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Figure 1: Effect of latent and feature dimension and number of LODs. Increasing the latent dimension leads to a much higher size at
smaller increases in PSNR. Optimal value of feature dimension (or decoded latents) is 1 or 2. Increasing the number of LODs shifts the
curve upwards and to the right yielding no difference in tradeoff curves.
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Figure 2: Effect of MLP Width and Depth. Increasing MLP hid-
den layer size (width) is detrimental due to a large increase in un-
compressed parameters (and BPP) with a small increase in PSNR.
Increasing the number of hidden layers beyond 2 has little effect
on the tradeoff curve.

3.1. Effect of Latent and Feature Dimension

We ablate the number of LODs, the number of latent
dimensions, and feature dimensions after decoding the la-
tents. Results are shown in Fig.1. We see that increasing
the feature dimension from 1 to 2 does not significantly
alter the tradeoff curve while increasing it to 4 leads to a
small drop in performance. On the other hand, increasing
the latent dimension has a strong impact on the tradeoff
curve as it directly impacts the number of latents entropy
encoded. BPP visibly increases with higher latent dimen-
sion but leads to only modest gains in PSNR. Increasing the
number of LODs shifts the curve upwards and to the right
but has no overall impact in terms of improving PSNR for a
fixed BPP.

3.2. Effect of MLP Width and Depth

Finally, we analyze the effect of the hidden dimension
(width) of the MLP as well as the number of layers (depth)
in Fig.2. Increasing the depth from 1 to 2 shows a marginal
improvement while further increases do not have a large ef-

fect. This shows that the MLP’s representation capability
caps at a certain value as the majority of parameters are
present in the feature grid. Increasing MLP width on the
hand leads to a clear drop in performance as the number
of uncompressed parameters in the MLP increases approxi-
mately quadratically leading to a larger BPP (shifting to the
right) but with only small gains in PSNR (small shift up).

Reference

PSNR: 30.73 dB, BPP: 0.26PSNR: 26.85, dB BPP: 0.28

JPEG Ours

Figure 3: Qualitative results on Kodak. We significantly
outperform JPEG in the low BPP regime (+4dB) at similar
BPP (∼0.26). JPEG fails to capture the intricate details in the
image such as the window of the building or the clouds in the sky,
exhibiting severe artifacts.

4. Feature grid visualization

We visualize the learned latents after training on the
Beauty image from UVG-F in Fig.4. With increasing
LOD or feature resolution (from left-to-right and top-to-
bottom), we see that finer details of the image are captured.
Thus, the latents represent the image features at different
scales/levels. This can be particularly useful for down-
stream tasks which may require features at different scales.
Additionally, such a hierarchy enables the application of our
method in streaming scenarios with higher bitrates leading



Figure 4: Visualization of learned features (right) for Beauty image (left) from UVG-F. Feature maps at increasing LODs (left-to-right then
top-to-bottom) capture finer details in the image highlighting the hierarchical features learned for each signal.

Predicted image (2160x3840) Linear Cubic Nearest Ours
Figure 5: Application of our approach for super-resolution of the Jockey image in the UVG-F dataset. We obtain sharper images compared
with standard upsampling methods at 2x upsampling factor (2160× 3840).

to higher PSNR (as also discussed in Sec.4.5). Beyond a
certain level, we see that the features become less informa-
tive globally. This is due to the fact that the grid resolution
at finer levels is larger than the number of entries in the la-
tents which is fixed. Multiple locations in the grid map to
the same entry in the latent space.

5. Image superresolution
We show the capability of our approach to perform

super-resolution of images by providing the input coordi-
nate grids at the desired resolution. Fig.5 shows results
on the super-resolution of the Jockey image from UVG-F
(1080×1920 resolution) by a factor of 2. We obtain slightly
sharper images as compared to standard upsampling meth-
ods such as linear, cubic or nearest neighbor interpolation.

6. Additional visualizations
We show additional visualizations of the Pearl (23466×

20000) and SMACS images (4630 × 4537) in Fig.6 (top
row and bottom row respectively). We see that we continue
to obtain high quality reconstructions and achieve similar
PSNR compared to Instant-NGP while being much smaller
in storage size (in terms of BPP). Significant artifacts and
discoloration are also visible for the traditional JPEG while
still requiring more memory than our approach.



Reference Instant-NGP JPEG Ours

PSNR: 29.62 dB
Size: 59.08 MB

PSNR: 27.29 dB
Size: 11.82 MB

PSNR: 29.44 dB
Size: 6.79 MB

Size: 198 MB

Pearl

23466x20000

PSNR: 34.61 dB
Size: 470 KB

PSNR: 29.05 dB
Size: 358 KB

PSNR: 34.90 dB
Size: 111 KB

Size: 12.3 MB

Reference Instant-NGP JPEG OursSMACS

4537x4630

Figure 6: Visualization of Pearl and SMACS images. For Pearl, we maintain a similar PSNR as Instant-NGP [4] while being ∼9/× smaller.
For SMACS, we marginally outperform them with more than a 4× compression factor. JPEG exhibits visual discoloration artifacts leading
to a much lower PSNR even with lower compression factors.
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