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1. Maths
In this section, we provide a short mathematical descrip-

tion of our method (probabilistic modeling and losses).

1.1. Definitions
• I , I ′ is the pair of images to match.

• qi, q′j ∈ R are the ith and jth keypoint logits from I and I ′

respectively (M in total).

• di, d′j ∈ R128 are the ith and jth descriptors from I and I ′

respectively (M in total).

• sij ∈ [−1,+1] is the similarity score between keypoint i
from I and keypoint j from I ′. s is therefore a M × M
matrix.

• ci, c′j are the ith and jth correspondence indices from I and
I ′ respectively (N in total, with N ≤ M ). Such that ci and
c′i represent the correspondence between descriptor dci and
d′c′i

with similarity scic′i .

1.2. Matching Probabilities

The matching probabilities are modeled by a double-
softmax, enforcing the cycle-consistency property (cf.
Fig. 1).

Pi←→j = Pi−→jPi←−j

• Pi−→j = e
sij
τ∑

k

e
sik
τ

is the directional probability of

matching di to d′j

• Pi←−j = e
sij
τ∑

k

e
skj
τ

is the directional probability of

matching d′j to di

where τ is the temperature, and s the pairwise similarity
matrix; obtained using a standard cosine similarity function.

sij = cosim(di, d
′
j) =

⟨di, d′j⟩√
⟨di, di⟩⟨d′j , d′j⟩

where ⟨., .⟩ is the dot product.

Figure 1: Visualization of the cycle-consistent probabilistic
path. The probability Pi←→j is the probability of following
the green path, over the set of all possible red paths; from
image I to I ′ and back.

1.3. Keypoint Probabilities

All keypoints probabilities are obtained using a simple
sigmoid.

σ(qi) =
1

1 + e−qi

1.4. Matching Loss

The matching loss of a single image pair is the negative
log likelihood loss, summed over the entire set of corre-
spondences.

Ldesc = NLL(s, c, c′)

= − 1

N

N−1∑
i=0

logPci←→c′i

= − 1

N

N−1∑
i=0

[
logPci−→c′i

+ logPc′i←−ci

]
1



1.5. Keypoint Loss

Once the matching success of descriptors as been mea-
sured (and stored in variable y ∈ {0, 1}N , cf. Sec. 1.6), we
can learn the keypoint probabilities using a standard binary
cross-entropy loss; using the keypoint logits extracted from
both I and I ′.

Lkey = BCE(q, y, c) + BCE(q′, y, c′)

where

BCE(q, y, c) = − 1

N

N−1∑
i=0

[
yi log σ(+qci) + (1− yi) log σ(−qci)

]

1.6. Matching Success

The matching success is the process of measuring
whether or not matching currently learned descriptors (us-
ing a simple mutual nearest neighbor) would produce cor-
rect matches. It can be expressed mathematically as veri-
fying whether or not the similarity of a ground truth corre-
spondence is the row and column maximum in s.

yi = 1
[
scic′i ≥ max

k
{scik}

]
1
[
scic′i ≥ max

k
{skc′i}

]
where 1

[
.
]

is the indicator function.

2. Additional Experiments

In this section, we present additional experiments as ev-
idence of the robustness of SiLK under varying, but real-
istic, conditions. We also hope this comprehensive set of
data points can be used by the community to tune their own
version of SiLK to a specific use case or task. For example,
if a task is sensitive to false positive matching, one might
consider using the ratio-test filtering, as indicated in Tab. 3.

SiLK’s robustness is tested against three important types
of variations, as we aim to answer the following.

1) Are SiLK’s results robust across different image reso-
lutions ? (cf. Tab. 1 and Fig. 2)

2) Can we improve SiLK by simply selecting more key-
points ? Or do we reach saturation for a certain value of k
? (cf. Tab. 2 and Fig. 3)

3) Do existing false-positive removal techniques work on
SiLK? And how is performance affected by it ?(cf. Tab. 3).

Additionally, we empirically demonstrate the impor-
tance of not using zero-padding when learning keypoints
(cf. Tab. 4). This is an often under-emphasized point we
shed light on here.

2.1. Downsizing images is better than increasing ϵ

All of the HPatches metrics reported in this paper use
an ϵ-distance error threshold to determine whether or not
a pixel position is considered close-enough to its ground
truth. A low ϵ means the metrics are reported in a highly
accurate regime, while a high value of ϵ allows for some
local mistakes to occur. However, ϵ is an absolute pixel
distance, which means that metrics might vary in non-trivial
ways as the input resolution changes during inference.

Existing methods tend to report metrics using high val-
ues of ϵ. For example, D2-Net [1], R2D2 [3] and DISK [5]
all report MMA with ϵ-thresholds up to 10. We argue this
is unnecessary. Tasks that do not require accurate keypoints
(i.e. high values of ϵ) might want to reconsider running
their keypoint model on lower resolution images (to reduce
computational cost). As an input image is downscaled by a
factor γ, ϵ should also be downscaled by the same factor in
order to keep its relative size constant. So in theory, a met-
ric reported on resolution α with error-threshold ϵ should
be roughly equivalent to the same metric reported on reso-
lution α

γ with error threshold ϵ
γ .

In Tab. 1, we show this initial intuition is not correct.
When looking at resolutions of 720 and 240 (i.e. down-
scaling of γ=3), existing methods all underperform their
expected theoretical values. SiLK is the only model that
consistently gain from running at lower resolutions. This
is likely caused by SiLK’s ability to obtain high number of
keypoints on low resolution images while other methods are
limited by their sparsity constraints (i.e. cell-based keypoint
detection and NMS).

Additionally, we show in Fig. 2 that SiLK’s performance
against sparse keypoint methods is robust across a wide
range of resolutions; with the exception of SIFT on large
image resolution, using Homography Estimation Accuracy
metric. One can also observe large performance gain (ex-
cept on MMA) versus LoFTR [4](dense keypoint method)
in the low resolution regime.

2.2. Increasing top-k improves SiLK, but saturates
early

Increasing top-k has shown multiple times (cf. Tab. 1) to
improve overall results. In this experiment, we simply vary
the parameter k in order to monitor SiLK’s performance.

As can be observed in Fig. 3 and Tab. 2, results start to
saturate after k = 10, 000; on Homography Estimation and
MMA. Repeatability continuously increases as we increase
k, but that is simply a consequences of getting more key-
points (i.e. the keypoint overlaps become more likely).

2.3. Improving MMA using ratio-test or double-
softmax filtering

All previously reported results have been computed us-
ing MNN matching on unprocessed cosine distances. There
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Figure 2: SiLK’s performance is robust across different input scales. All sparse methods are outperformed by SiLK on
all metrics and all scales (except SIFT on Homography Estimation Accuracy and large image resolution). Notice how R2D2,
DISK and SuperPoint rankings differ across resolutions.

are, however, known distance post-processing techniques
used to reduce false positive matching. The ratio-test [2]
is one of those. The distance of the best match is divided by
the distance of the second best match. A low value indicates
a large difference between the two best distances, which in-
dicates a measure of relative distinctiveness. Therefore, fil-
tering out matches with high ratio values do tend to reduce
matching errors caused by repeated similar keypoints (e.g.
window corners of a building).

More recently[4], a similar idea has emerged from the
probabilistic formulation of the matching problem: Filter-
ing out low-probability matches seems like a natural way to

reduce false positive matches.
In Fig. 4 and Tab. 3, we show that using either ratio-test

or double-softmax filtering can help SiLK trade Homogra-
phy Estimation for MMA.

2.4. Use NO padding to learn keypoints.

Zero padding is commonly used in various models. It is
the process of adding a 0-filled border to an image or dense
feature map. A common example is when using 3x3 convo-
lutions, adding a padding of 1 will ensure the spatial shape
of the input is preserved, otherwise it would be reduced.

The use or lack of padding is rarely mentioned by exist-
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HPatches
Size Repeatability Hom. Est. Acc. Hom. Est. AUC MMA # of keypoints

ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 pre-match post-match

SuperPoint

240 0.39× 0.64 0.47× 0.83 0.20× 0.54 0.48× 0.76 305 187
360 0.37 0.63 0.49 0.83 0.23 0.55 0.45 0.74 569 341
480 0.34 0.61 0.43 0.80 0.20 0.51 0.41 0.72 847 499
600 0.31 0.59 0.41 0.79 0.19 0.49 0.38 0.69 1141 655
720 0.28 0.56✓ 0.37 0.74✓ 0.16 0.45✓ 0.35 0.66✓ 1460 813

SIFT

240 0.35× 0.54 0.69× 0.89 0.39× 0.68 0.48× 0.57 677 298
360 0.33 0.53 0.63 0.85 0.37 0.65 0.45 0.56 1331 570
480 0.31 0.52 0.60 0.84 0.34 0.61 0.41 0.55 2189 910
600 0.29 0.51 0.53 0.80 0.32 0.58 0.38 0.53 3212 1297
720 0.27 0.50✓ 0.49 0.75✓ 0.28 0.53✓ 0.35 0.50✓ 4273 1681

R2D2

240 0.36× 0.70 0.52× 0.81 0.25× 0.56 0.44× 0.79 1037 351
360 0.37 0.73 0.48 0.82 0.23 0.54 0.38 0.77 3193 1042
480 0.36 0.72 0.45 0.79 0.20 0.50 0.34 0.75 6088 1967
600 0.33 0.71 0.37 0.76 0.17 0.46 0.31 0.72 9517 2994
720 0.30 0.68✓ 0.32 0.69✓ 0.14 0.42✓ 0.26 0.67✓ 12036 3698

DISK

240 0.46× 0.72 0.54× 0.86 0.27× 0.60 0.62× 0.87 841 484
360 0.42 0.71 0.54 0.85 0.26 0.58 0.58 0.86 1847 1030
480 0.38 0.69 0.45 0.80 0.22 0.52 0.52 0.84 3349 1794
600 0.34 0.67 0.39 0.75 0.19 0.47 0.47 0.81 5152 2647
720 0.31 0.65✓ 0.34 0.71✓ 0.16 0.43✓ 0.42 0.77✓ 7417 3732

LoFTR (outdoor)

240 - - 0.74× 0.90 0.44× 0.72 0.76× 0.93 1280 662
360 - - 0.71 0.90 0.42 0.70 0.70 0.92 2878 1533
480 - - 0.65 0.87 0.37 0.65 0.64 0.91 5109 2719
600 - - 0.59 0.83 0.33 0.61 0.58 0.89 7987 4166
720 - - 0.53 0.79✓ 0.30 0.57✓ 0.53 0.87✓ 11490 5804

SiLK (top-10k)

240 0.76✓ 0.90 0.80✓ 0.93 0.54✓ 0.78 0.73✓ 0.79 10000 4816
360 0.68 0.85 0.71 0.91 0.46 0.72 0.66 0.75 10000 4515
480 0.62 0.81 0.62 0.87 0.40 0.66 0.59 0.71 10000 4283
600 0.57 0.77 0.55 0.81 0.35 0.59 0.53 0.67 10000 4092
720 0.53 0.73× 0.49 0.76× 0.30 0.53× 0.48 0.63× 10000 3945

SiLK (top-5k)

240 0.69✓ 0.86 0.79✓ 0.93 0.53✓ 0.77 0.71✓ 0.77 5000 2331
360 0.62 0.80 0.70 0.90 0.45 0.70 0.64 0.73 5000 2181
480 0.56 0.76 0.60 0.85 0.39 0.64 0.57 0.69 5000 2074
600 0.51 0.71 0.52 0.80 0.33 0.57 0.52 0.65 5000 1983
720 0.47 0.67× 0.48 0.74× 0.29 0.52× 0.47 0.61× 5000 1919

SiLK (top-1k)

240 0.54✓ 0.73 0.74✓ 0.91 0.44× 0.72 0.66✓ 0.71 1000 429
360 0.48 0.66 0.62 0.86 0.38 0.65 0.59 0.67 1000 408
480 0.43 0.61 0.53 0.81 0.32 0.58 0.52 0.63 1000 389
600 0.38 0.57 0.47 0.75 0.28 0.52 0.47 0.59 1000 376
720 0.35 0.53× 0.43 0.69× 0.25 0.48✓ 0.42 0.55× 1000 366

Table 1: SiLK is the only model that benefits from running at lower resolutions. On each metric and method, we compare
the lowest (resolution=240, ϵ=1) pair, to the highest (resolution=720, ϵ=3) pair. Since the resolution / ϵ ratio is the same for
both pairs, the measured level of accuracy is equivalent.

ing keypoint methods. However, we find that most imple-
mentations do in fact avoid the use of zero padding. Other
implementations might use it, but then compensate by re-
moving an arbitrarily-sized border from the dense outputs.

The reason for not using padding in SiLK’s case is be-
cause it creates easily detectable corners and edges on the
image borders, therefore causing overfitting during training.

To show the importance of not using padding when
learning keypoints, we provide two tables (cf. Tab. 4) as
evidence of the adverse effects of using it.

3. Implementation details
3.1. Data augmentation

Here we detail the data augmentation used by SiLK dur-
ing training, provided by Albumentation library (Fig. 5):
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HPatches
Repeatability Hom. Est. Acc. Hom. Est. AUC MMA # of keypoints

k ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 pre-match post-match
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Table 2: Numerical results used in Fig. 3.

HPatches
Hom. Est. Acc. Hom. Est. AUC MMA # of keypoints

Threshold ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 pre-match post-match

ratio-test

1.00 0.62 0.87 0.40 0.66 0.59 0.71 10000 4283
0.95 0.61 0.87 0.40 0.65 0.62 0.75 10000 3771
0.90 0.61 0.86 0.40 0.65 0.66 0.79 10000 3314
0.85 0.59 0.84 0.40 0.64 0.69 0.83 10000 2926
0.80 0.60 0.83 0.40 0.63 0.72 0.86 10000 2599
0.75 0.58 0.82 0.40 0.62 0.74 0.88 10000 2314
0.70 0.56 0.82 0.39 0.61 0.76 0.89 10000 2061
0.65 0.54 0.78 0.39 0.59 0.77 0.90 10000 1830
0.60 0.53 0.78 0.38 0.58 0.77 0.91 10000 1620
0.55 0.51 0.75 0.37 0.57 0.77 0.91 10000 1427
0.50 0.49 0.76 0.37 0.55 0.76 0.90 10000 1248

double-softmax

1.00 0.62 0.86 0.40 0.65 0.52 0.63 10000 5321
0.95 0.59 0.86 0.39 0.64 0.68 0.83 10000 3650
0.90 0.59 0.84 0.39 0.63 0.73 0.88 10000 3244
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0.80 0.56 0.81 0.39 0.61 0.77 0.92 10000 2616
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0.55 0.53 0.76 0.38 0.57 0.79 0.92 10000 1335
0.50 0.51 0.76 0.38 0.57 0.79 0.92 10000 1141
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HPatches
Repeatability Hom. Est. Acc. Hom. Est. AUC MMA # of keypoints

padding 0.59 0.79 0.59 0.84 0.39 0.63 0.57 0.68 10000 4222
no padding 0.62 0.81 0.62 0.87 0.40 0.66 0.59 0.71 10000 4283

ScanNet
Rotation Translation Chamfer

Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓
5◦ 10◦ 45◦ Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

padding 93.7 97.2 99.7 2.1 0.9 75.2 89.8 97.4 5.2 2.5 85.6 95.9 97.8 4.6 0.1
no padding 98.1 99.0 99.6 1.7 0.8 82.9 94.8 99.0 4.1 2.1 92.8 98.3 99.1 4.3 0.1

Table 4: Avoid using padding to learn good keypoints.

Figure 3: Increasing top-k keypoint selection gives an
initial boost in performance, but tend to get dimishing
returns for k > 10,000.

Figure 4: MMA / Homography trade-off can be con-
trolled with ratio-test and double-softmax filtering. Dif-
ferent threshold values are tested (between 0.5 and 1) using
both methods.

import a l b u m e n t a t i o n s as A

s i l k a u g m e n t a t i o n = A. Compose ( [
A. RandomGamma (

p = 0 . 1 , gamma l imi t = (15 , 65)
) ,
A. H u e S a t u r a t i o n V a l u e (

p = 0 . 1 , v a l s h i f t l i m i t =( −100 , −40)
) ,
A. B lu r (

p = 0 . 1 , b l u r l i m i t = ( 3 , 9 )
) ,
A. Mot ionBlur (

p = 0 . 2 , b l u r l i m i t = ( 3 , 25)
) ,
A. R a n d o m B r i g h t n e s s C o n t r a s t (

p = 0 . 5 ,
b r i g h t n e s s l i m i t = ( −0 .3 , 0 . 0 ) ,
c o n t r a s t l i m i t = ( −0 .5 , 0 . 3 )

) ,
A. GaussNoise ( p = 0 . 5 ) ,

] , p = 0 . 9 5 )

Figure 5: Pseudo-code: Data augmentation for SiLK.
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