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We provide more details about HMR 2.0, i.e., the archi-
tecture we use (Section S.1), the data (Section S.2) and the
training pipeline (Section S.3). Furthermore, we describe
the aspect of pose prediction (Section S.4) and we discuss
the metrics we use for evaluation (Section S.5). Then, we
discuss the experimental settings for tracking (Section S.6),
and action recognition (Section S.7). Finally, we provide
additional qualitative results (Section S.8).

S.1. HMR 2.0 architecture details
The architecture of our HMR 2.0 model is based on a

ViT image encoder and a transformer decoder. We use
a ViT-H/16 (“huge”) pre-trained on the task of 2D key-
point localization [25]. It has 50 transformer layers, takes a
256× 192 sized image as input, and outputs 16× 12 image
tokens, each of dimension 1280. Our transformer decoder is
a standard transformer decoder architecture [23] with 6 lay-
ers, each containing multi-head self-attention, multi-head
cross-attention, and feed-forward blocks, with layer nor-
malization [2]. It has a 2048 hidden dimension, 8 (64-dim)
heads for self- and cross-attention, and a hidden dimension
of 1024 in the feed-forward MLP block. It operates on a sin-
gle learnable 2048-dimensional SMPL query token as input
and cross-attends to the 16 × 12 image tokens. Finally, a
linear readout on the output token from the transformer de-
coder gives pose θ, shape β, and camera π.

S.2. Data details
In our training, we adopt the training data conventions of

previous works [10], using images from Human3.6M [4],
COCO [13], MPII [1] and MPI-INF-3DHP [18]. This forms
the training set for the version we refer to as HMR 2.0a in
the main manuscript. For the eventual HMR 2.0b version,
we additionally generate pseudo-ground truth SMPL [14]
fits for images from AVA [3], InstaVariety [6] and AI Chal-
lenger [24]. Since AVA and InstaVariety include videos, we
collect frames by sampling at 1fps and 5fps respectively.
For pseudo-ground truth generation, we use ViTDet [11]
for bounding box detection and ViTPose [25] for key-

point detection, while fitting happens using ProHMR [10].
We discard detections with very few 2D detected key-
points (less than five) and low detection confidence (thresh-
old 0.5). We also discard fits with unnatural body shapes
(i.e., body shape parameters outside [−3, 3]), unnatural
body poses (computed using a per-joint histogram of poses
on AMASS [17]), and large fitting errors (i.e., which indi-
cates that the reconstruction was not successful). For train-
ing our HMR 2.0b model, we sample with different proba-
bilities from each dataset, i.e., Human3.6M: 0.1, MPII: 0.1,
MPI-INF-3DHP: 0.1, AVA: 0.15, AI Challenger: 0.15, In-
staVariety: 0.2, COCO: 0.2.

S.3. Training details
We train our main model using 8 A100 GPUs with an ef-

fective batch size of 8 × 48 = 384. We use an AdamW
optimizer [15] with a learning rate of 1e-5, β1 = 0.9,
β2 = 0.999, and a weight decay of 1e-4. Training lasts for
1M iterations, which takes roughly six days. For our main
model HMR 2.0b, we train the network end-to-end. How-
ever, for the HMR 2.0a variant, the ViT encoder remains
frozen, allowing a larger effective batch size of 8 × 512 =
4096, learning rate of 1e-4, and fewer training iterations of
100K (i.e., roughly equivalent number of epochs).

While training, we weigh the different losses. Lkp3D,
Lkp2D, and Ladv have weights 0.05, 0.01, and 0.0005 re-
spectively. The terms within Lsmpl are also weighed dif-
ferently, the θ and β terms weigh 0.001 and 0.0005 respec-
tively.

S.4. Pose prediction
For the pose prediction model, we train a vanilla trans-

former model [23] from the tracklets obtained by [19]. Each
tracklet at every time instance contains 3D pose and 3D
location information, where the pose is parameterized by
the SMPL model [14] and the location is represented as the
translation in the camera frame. The transformer has 6 lay-
ers and 8 self-attention heads with a hidden dimension of
256. Each output token regresses the 3D pose and 3D loca-



tion of the person at the specified time-step. We train this
model by randomly masking input pose tokens and apply-
ing the loss on the masked tokens. During inference, to
predict a future 3D pose, we query the model by reading
out from a future time-step, using a learned mask-token as
input to that time-step. Similarly for amodal completion,
we replace the missing detections with the learned mask-
token and read out from the output at the corresponding
time-step. The model is trained with a batch size of 64 se-
quences and a sequence length of 128 tokens. We use the
AdamW optimizer [15] with a learning rate of 0.001 and
β1 = 0.9, β2 = 0.95.

S.5. Metrics
For our evaluation, we use the metrics that are common

in the literature:
3D Pose: We follow [5] and we use MPJPE and PA-MPJPE.
MPJPE refers to Mean Per Joint Position Error and it is the
average L2 error across all joint, after aligning with the root
node. PA-MPJPE is similar but is computed after aligning
the predicted pose with the ground-truth pose using Pro-
crustes Alignment.
2D Pose: We use PCK as defined in [26]. This is the Per-
centage of Correctly localized Keypoints, where a keypoint
is considered as correctly localized if its L2 distance from
the ground-truth keypoint is less than a threshold t. We re-
port results using different thresholds (@0.05 and @0.1 of
image size).
Tracking: Following [20, 21], we use standard tracking
metrics. This includes ID switches (IDs), MOTA [7],
IDF1 [22], and HOTA [16].
Action Recognition: We report results using mAP metrics
as defined in the AVA dataset [3]. We further provided a
more fine-grained analysis reporting results on different ac-
tion categories: actions that involve Object Manipulation
(OM), actions that involve Person Interactions (PI), and ac-
tions that involve Person Movement (PM). The results in
these categories are also reported using mAP.

S.6. Tracking with PHALP′

In the main manuscript, we compare different human
mesh recovery systems on the downstream problem of
tracking (Table 3 of the main manuscript). For this, we
modify the PHALP approach [21], so that pose distance is
computed on the SMPL space that all the models share. To
make this comparison fair, we keep other variables simi-
lar to the original PHALP (e.g., same appearance embed-
ding). Note that this comparison is generous to baselines
that do not model appearance themselves. Eventually, our
final 4DHumans system uses a sampling-based appearance
head and our new pose prediction, which lead to the state-
of-the-art performance for tracking on PoseTrack (Table 4

of the main manuscript). To model appearance, we texture
visible points on the mesh by projecting them onto the input
image and sampling color from the corresponding pixels.

S.7. Action recognition

As an alternative way to assess the quality of 3D hu-
man reconstruction, we evaluate various human mesh re-
covery systems on the downstream task of action recogni-
tion on AVA (please refer to [19] for more details on the
task definition). More specifically, we take the tracklets
from [19], which were generated by running PHALP [21]
on the Kinetics [8] and AVA [3] datasets. Then, we re-
place the poses from various human mesh recovery models
(i.e., PyMAF [28], PyMAF-X [27], PARE [9], CLIFF [12],
HMAR [21], HMR 2.0) and evaluate their performance on
the action recognition task. In this pose-only setting, the
action recognition model has access only to the 3D poses
(in the SMPL format) and 3D location and is trained to pre-
dict the action of each person. For a fair comparison and
to achieve the best performance for each 3D pose regressor,
we retrain the action recognition model specifically for each
3D pose method.

S.8. Additional qualitative results

We have already provided a lot of qualitative results of
HMR 2.0, both in the main manuscript and in videos on
the project webpage. Here, we provide additional results,
including comparisons with our closest competitors (Fig-
ure S.1), and a demonstration of our results in a variety of
challenging cases, including successes (Figure S.2) and fail-
ure cases (Figure S.3).
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Figure S.1: Qualitative comparison of our approach with state-of-the-art methods. We compare HMR 2.0 with our closest competitors,
PyMAF-X [27], PARE [9] and CLIFF [12]. For each example, we show the input image, and results from each method (including the
frontal and a side view). HMR 2.0 is significantly more robust in a variety of settings, including images with unusual poses, unusual
viewpoints and heavy person-person overlap.
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Figure S.2: Qualitative results of our approach on challenging examples. For each example we show the input image, the reconstruction
overlay, a side view and the top view. The examples include unusual poses, unusual viewpoints, people in close interaction, extreme
truncations and occlusions, as well as blurry images.
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Figure S.3: Failures of single frame 3D human reconstruction with HMR 2.0. Despite the increased robustness of our method, we
observe that HMR 2.0 occasionally recovers erroneous reconstructions in cases with very unusual articulation (first row), heavy person-
person interaction (second row), and very challenging depth ordering for the different body parts (third row).
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