
A. Outlier-Aware Loss
A.1. Analysis of Outlier-Aware Loss

We produced some histograms of the pixel-to-pixel difference values obtained by various models on several datasets, and
find that often the difference values concentrate on the mean that is close to zero and show a similar frequency curve as some
bell-shaped distribution with a small variance. Thus, we postulate that the true value is equal to the predicted value plus error
as y = ŷ + δ, in which δ follows an unknown distribution with a mean of 0, which is not always the case and influenced by
the data distribution, loss function, and the model itself. Sometimes, the results generated by some models may have a very
significant bias. But in this case, with a similar frequency curve as the Laplacian distribution due to the L1 loss, the losses by
properly predicted pixels form the majority of the total loss when the network converges. Therefore, decreasing the losses in
the majority well predicted pixels could rapidly reach a smaller total loss while ignoring the outliers. However, we think that
the outliers or the badly predicted pixels as the minority outside the confidence interval shall be the focus of the optimization.
Therefore, inspired by Focal Loss [63] which focuses more on the hard examples, we propose Outlier-Aware Loss LOA.

We apply the idea of Focal Loss to image restoration problems. Following that Focal Loss optimizes cross entropy, we
decide to optimize L1 loss. Compared to L1 =

∑
i |yi−ŷi|, L2 =

∑
i (yi − ŷi)

2 is more sensitive to outliers as the difference
is squared, which causes the suppression of high-frequency details involving the regression-to-the-mean issue [84]. Since L2

loss basically causes the predicted images to be blurry [67], L1 loss is widely utilised in image restoration networks. Thus,
we decide to figure out a new loss function for the image restoration problem which shall be in the form of L1 ×W where
W represents the weight indicating the degree of hardness on properly predicting this pixel.

L2 loss assumes that data is drawn from Gaussian distribution [67], and similarly, L1 loss comes from the assumption
that the data is drawn from Laplacian distribution as shown in Eq. 10 where µ is the mean and b is the scale parameter. In
this study, we decide to apply the Laplacian distribution as the weight decay curve to rearrange the importance of the loss
generated by different pixels. The loss of the terribly predicted pixels will be enlarged.

f(x|µ, b) = 1

2b
exp(−|x− µ|/b) (10)

The weight is adjusted to ensure W ∈ [0, 1] and is written as W (x|µ, b) = 1 − exp(−α|x− µ|/b). And consequently,
Outlier-Aware Loss LOA is written as Eq. 11. The parameter α could be utilised to control the degree of focus we would
like to put on the accurately predicted pixels. The smaller α is, the less attention is paid to accurately predicted pixels. LOA

shall be approaching L1 as α gradually becomes larger, which is shown in Fig. 8. It could be observed that the number of
the badly predicted outliers is reduced by LOA.

LOA =
1

HW

H−1∑
i=0

W−1∑
j=0

[
|δi,j | ×

(
1− e−α|δi,j−µ|/b

)]
(11)

The generalizability of LOA is tested on networks as shown by Table 6. It is observed that LOA could consistently improve
the performance of those models.

Tasks SR ISP LLE
Models EDSR×4 [62] EdgeSR×2 [71] FSRCNN×2 [19] SYENet(SR)×2 MiAigo [45] JMU [45] SYENet(ISP) IAN [36] LUM [98] SYENet(LLE)
L1 28.9164 32.0771 31.8186 33.1691 23.5752 23.7805 24.7200 19.8092 19.2398 20.9717

LOA(Ours) 28.9530 32.1961 32.1109 33.1837 23.8255 23.9428 24.8732 20.2487 19.8516 22.5900

Table 6: The performance (PSNR) of different models could be consistently improved by Outlier-Aware Loss.

A.2. Generalized Outlier-Aware Loss

Apart from image restoration problems where L1 loss is mostly utilised, the Outlier-Aware Loss LOA could be further
generalized by introducing a norm parameter p and changing the definition of scale parameter b for the consistency between
MLE(maximum likelihood estimation) and minimizing the loss function. For example, for problems where L2 loss outper-
forms L1 loss, we could set p to be 2 and define b to be 2σ2 for the consistency between minimizing L2 loss and MLE on
Gaussian distribution.

LOA =
1

HW

H−1∑
i=0

W−1∑
j=0

[
|δi,j |p ×

(
1− e−α|δi,j−µ|p/b

)]
(12)

(a) (left)Weight W (x|µ, b) = 1 − exp(−α|x− µ|/b) for adjusting the original loss over the difference between the network output and
ground truth x = ∆ = I(Output) − I(GT) as the tunable hyperparameter α varies. For simplicity, it is assumed that the mean µ and the
scale parameter b of ∆ are 0 and 1 respectively. It shows that larger α makes LOA approach L1, while smaller α reduces the weights of
the loss by well predicted pixels to a larger degree. (right)The loss value over ∆: compared with L2, LOA reduces the weights of the well
predicted pixels instead of squaring the loss values of badly predicted pixels. Since LOA ≤ L1, L1 becomes the asymptote of LOA as α
becomes larger.

(b) (left)The normalized loss density that we define as loss value times the probability density of that loss value L × p(L), which leads to
the expectation of loss to be 1 as

∫
L L × p(L)dL = 1. We could understand the loss density as the contribution to the total loss by this

loss value. It could be observed that LOA reshapes the loss density by increasing the proportion of outliers and reducing the proportion
of well predicted pixels in the total loss. Specifically, a smaller α causes a larger proportion transfer towards the outliers. Therefore,
we successfully increase the importance of badly predicted outliers and decrease the importance of well predicted pixels in the training.
Initially, we try to collect the loss values by testing the pre-trained model but found the vibration of the values cause the curve to be
too messy. Thus we decide to randomly generate pixel-to-pixel loss values by sampling from the Laplacian distribution since the loss
values collected from the test look very close to it. Note that this is not always the case due to the variation of the dataset and network
itself. (right)The cumulative normalized loss, which is the integration of normalized loss density, shows the growth of total loss when we
integrate the total loss from small loss values to large ones. It is observed that for L1 loss, the loss values smaller than 3 forms 80% of the
total loss, but for LOA loss with α = 0.1, the loss values smaller than 3 only forms 30% of the total loss.

Figure 8: Analysis of the Outlier-Aware Loss: Combining (a) and (b) could demonstrate the function of LOA and α. It could
be seen from all the four figures that larger α make LOA approach L1 but would not exceed L1. So that, we could avoid the
regression to the mean problem by L2.

As mentioned above, different loss functions imply the MLE of different data distributions. And hence, a variety of loss
functions should be proposed and studied to respond to the various data distributions in the real world.

B. ISP unsupervised warming up strategy

Warming up strategy used in deep learning usually aims at overcoming optimization challenges early in training [25].In
our ISP task, besides this aim, we want our network to have the ability to recover the defective pixel, which often occurs in
ISP raw data because of the physical issues on the camera sensor, by their neighbor pixels. Inspired by [32], we randomly
mask 1

3 of the input by 3× 3 mask tokens and train the network to recover them with 1e− 6 learning rate for 10 epochs.

C. Re-parameterizing the ConvRep block

The input feature and output feature of ConvRep block in SYENet shall have C(in) and C(out) channels. ConvRep block
has N branches, each of which can be designed specifically. Each branch could convert the channel of the input feature
to R × C(out) where R is the hyperparameter. The features by N branches shall be concatenated in channel dimension,
and hence the number of channels becomes N × R × C(out). Then the final 1 × 1 convolution converts the feature with
N × R × C(out) channels to output feature with C(out) channels. The reparameterization shall turn the complex ConvRep
block back to a normal convolution block for inference.

The convolutional block injected by an input feature tensor I(in) ∈ RN×C(in)×W×H shall have a weight matrix W ∈
RC(out)×C(in)×kW×kH and a bias matrix B ∈ RC(out)

. In SYENet, it is set that all the convolutions generate the output with
the same shape of the input feature map by arranging the padding carefully for the purpose of concatenation afterward. Batch
normalization could be expressed as Eq. 13 converting input X to Y , in which γ and β are normally assigned to be 1 and 0
respectively for no linear transformation.

Y=
X −E[X]√
VAR[X] + ϵ

× γ + β

=(
X√

VAR[X] + ϵ
+

−E[X]√
VAR[X] + ϵ

)× γ + β

=(W (bn) ×X +B(bn))× γ + β (13)

It is obvious that the batch normalization towards the output of the convolution layer could be converted to the batch
normalization towards the weight and bias of the convolution layer, as shown in Eq. 15. In addition, the concatenation of
convolution output could also be re-parameterized as the concatenation of the weights and bias of all the convolution layers,
as shown by Eq. 17. In the following equations, • means convolution operation. It is assumed the convolution in each branch
has C(out) output channels, and hence the concatenation of convolutions from all the branches can be reparameterized as a
convolution with N × C(out) output channels.

F (conv) = CONV(F (in)) = F (in) •W (c) +B(c) (14)

Substituting Eq. 14 into the Eq. 13 could obtain the complete expression of convolution followed by batch normalization,
which is shown

F (conv+bn)=BN(F (conv))

=
(
W (bn) × F (conv) +B(bn)

)
× γ + β

=
[
W (bn)(F (in) •W (c) +B(c)) +B(bn)

]
× γ + β

=(F (in) •W (bn)W (c) +W (bn)B(c) +B(bn))× γ + β

=F (in) • γW (bn)W (c) + γ(W (bn)B(c) +B(bn)) + β

=F (in) •W (c+bn) +B(c+bn) (15)

F (cat)=CAT(F (conv), F (conv+bn))

=F (in) •CAT(W (c+bn)) +CAT(B(c+bn))

=F (in) •W (cat) +B(cat) (16)

The numbers of F (conv) and F (conv+bn) to be concatenated may vary according to the specific implementation and could
be 0 if necessary.

F (rep)=CONV1×1(F
(cat))

=(F (in) •W (cat) +B(cat)) •W (c) +B(c)

=F (in) •MATMUL(W (cat),W (c)) +MATMUL(B(cat),W (c)) +B(c)

=F (in) •W (rep) +B(rep) (17)

MATMUL means matrix multiplication. W (c) and W (c+bn) both have the shape of C(out)×C(in)×KH ×KW , while
W (c+cat) after concatenation has the shape of NRC(out)×C(IN)×KH×KW where N is the number of branches and KH and
KW are the kernel size. As the input feature and output feature of this ConvRep block are designed to have C(in) and C(out)

channels, the final CONV1×1 after concatenation should have weight matrix with the shape of C(in) ×NRC(out) × 1× 1.
By squeezing, permuting, and matrix multiplication operations, the reparameterized weight matrix W (rep) and bias matrix
B(rep) could be obtained as shown by Eq. 17.

D. Two-branch feature fusion
After the re-parameterization, the two-branch structure could be converted back to two parallel convolution blocks and

later on be fused by a multiplication operation as activation. The output fusion by QCU is represented by Eq. 18, and each
branch can be represented as equations below Eq.19 and Eq. 20 as Î and Ĩ . B ∈ RN×C×1×1 is the learnable bias in QCU.

I = Î × Ĩ +B (18)

For the convolution with kernel size of (km, kn), k
(h)
m and k

(h)
n are defined as 1

2 (km − 1) and 1
2 (kn − 1). l is the index of

channels for input and output, while L represents the total number of channels.

Î lout
i,j = b̂lout +

Lin∑
l̂in=0

k(h)
m∑

m̂=−k
(h)
m

k(h)
n∑

n̂=−k
(h)
n

(
Î lini+m̂,j+n̂ × K̂lout,lin

m̂,n̂

)
(19)

Ĩ lout
i,j = b̃lout +

Lin∑
l̃in=0

k(h)
m∑

m̃=−k
(h)
m

k(h)
n∑

ñ=−k
(h)
n

(
Ĩ lini+m̃,j+ñ × K̃lout,lin

m̃,ñ

)
(20)

So that, the output feature value for a certain output channel in a fixed position (i, j) can be represented precisely as Eq.
21 which could be further expressed as Eq. 22.

I lout
i,j = Î lout

i,j × Ĩ lout
i,j + bi,j (21)

I lout
i,j =bi,j + b̂lout b̃lout +

Lin∑
lin=0

k(h)
m∑

m=−k
(h)
m

k(h)
n∑

n=−k
(h)
n

(
Î lout
i,j K̂lout,lin

m̂,n̂ b̃lout + Ĩ lout
i,j K̃lout,lin

m̃,ñ b̂lout
)
+

Lin∑
l̃in=0

Lin∑
l̂in=0

k(h)
m∑

m̃=−k
(h)
m

k(h)
m∑

m̂=−k
(h)
m

k(h)
n∑

ñ=−k
(h)
n

k(h)
n∑

n̂=−k
(h)
n

(
I l̃ini+m̃,j+ñ ×Klout l̃in

m̃,ñ × I l̂ini+m̂,j+n̂ ×Klout l̂in
m̂,n̂

)
(22)

Consequently, the general formulation of the output feature expression obtained by the re-parameterized two-branch struc-
ture shall be B + (K̂ + K̃)I +KI2 which is in quadratic form rather than the linear form of B +KI . So, the capability of
feature representation by this structure could be enhanced.

However, the expression that could be converted into the form of (K̂Î + B̂)× (K̃Ĩ + B̃) have a strict constraint in feature
representation pattern, which means the representation must have two sets of fixed values in solution space that are (−Î/B̂, 0)
and (−Ĩ/B̃, 0). Hence in order to solve this issue, an additional learnable bias B is merged into the network to boost the
ability to learn features.

E. Theoretical analysis about different fusion methods on a toy example
As mentioned in the paper, we compared different fusion methods including ADD(element-wise addition),

CAT+CONV(concatenation plus convolution), MUL(element-wise multiplication), and the proposed QCU(Quadratic Con-
nection Unit). As presented by Fig. 4 and Table 4, QCU gains higher PSNR than these techniques. It could be roughly
explained by that the mathematical expression of QCU shows more powerful representative capability than other fusion
methods.

The analysis is conducted on a toy example, which is a simple two-branch network with input tensor X of shape N ×
C × H ×W, output tensor Y , and two convolutions in each branch CONV(c) and CONV(s). Assuming the input channels
and output channels are all equal to C, and consequently, we have the weights and biases of the two convolutions, which are
W (c), B(c), W (s) and B(s), all with C channels. For CAT+CONV method, we have one extra convolution CONV(cat) with
input channel 2C, output channel C, weight W (cat) = [W (catc),W (cats)] and bias B(cat) = [B(catc), B(cats)]. W (cat) has
shape ∈ C× 2C×K×K, while W (catc) and W (cats) have shape ∈ C× C×K×K, in which K is the kernel size.

The model could be further simplified by setting C = 1, and kernel size to be 1 as well. The channel and kernel assumption
could convert the convolution into simple linear transformation.

Y (ADD)=(W (c)X +B(c)) + (W (s)X +B(s))

=(W (c) +W (s))X + (B(c) +B(s)) (23)

Y (CAT)=CAT(W (c)X +B(c),W (s)X +B(s)) (24)

Y (CAT+CONV)=W (cat)Y (CAT) +B(cat)

=W (catc)(W (c)X +B(c)) +B(catc) +W (cats)(W (s)X +B(s)) +B(cats)

=(W (catc)W (c) +W (cats)W (s))X + (W (catc)B(c) +B(catc) +W (cats)B(s) +B(cats)) (25)

Y (MUL)=(W (c)X +B(c))× (W (s)X +B(s))

=W (c)W (s)X2 + (W (c)B(s) +W (s)B(c))X +B(c)B(s) (26)

Y (QCU)=(W (c)X +B(c))× (W (s)X +B(s)) +B(QCU)

=W (c)W (s)X2 + (W (c)B(s) +W (s)B(c))X + (B(c)B(s) +B(QCU)) (27)

Comparing the expressions of all the fusion methods, the representative capability of these methods could be summarized.
As indicated by Table 4, the performance on PSNR by the fusion methods is ranked as QCU > MUL > CAT+CONV >
ADD. It is observed that QCU and MUL both have an extra second-order term X2, which makes QCU and MUL have the
more powerful representative capability to fit more complex models. On the other hand, CAT+CONV could be regarded
as a weighted addition operation, in which the weights of W (c), W (s), B(c), and B(s) are all adjusted by the following
convolution CONV(cat). Thus, CAT+CONV fusion could generate more complex fitting. It should be noted that those
tricks could significantly improve the performance of small networks. But in large models, since the networks already have
very large depth and width to fit complex distributions, those tricks might not be necessarily helpful.

F. Comparisons with models in SR task with scale factor ×3

More comparisons for the scale factor of ×3 are shown in Table 7. We trained these models on DIV2K and tested them
on Set5, Set14, BSD100, and Urban100 following Table 1.

Method Scale #P Avg latency(ms) FPS(2K) Set5 Set14 BSD100 BSD100 Score Urban100 Urban100 Score

ABPN [20] ×3 53K 59.3 17 32.99 29.46 28.48 2.264 26.34 2.434
SCSRN [42] ×3 67K 43.1 23 33.20 29.57 28.56 3.634 26.52 4.294
HOPN [42] ×3 48K 32.1 31 32.66 29.28 28.35 3.647 26.33 2.966
SYENet (Ours) ×3 7.9K 11.3 88 32.93 29.44 28.47 12.234 26.33 12.595

Table 7: Comparison on super-resolution issue between the results by PSNR(dB), SSIM, and comprehensive score with
SOTA: the models are ranked by score defined by Eq. 9 on BSD100 dataset. The normalization factors C for BSD100
Score are 1.8E16(×2), 1E14(×3), and 5E14(×4). While the normalization factors C for Urban100 Score are 2.5E15(×2),
3.5E12(×3), and 1.6E13(×4).

G. Constraints of low-level vision tasks in mobile devices
G.1. Constraints of input size and output size

Low-level vision tasks are basically regression questions. The output of the model is at least the same size as the input,
and particularly for super-resolution problems, the output size shall be many times larger than that of the input. However, the
output of high-level vision tasks like classification questions could be a vector containing scores of different object labels,
which is much smaller than the low-level vision tasks output. Apart from output size, the input to high-level vision tasks
could also be significantly smaller than low-level vision task input. Normally, the input image would be resized into as small
as 128 × 128 or 256 × 256. However, for low-level vision tasks, the information of pixels is rather vital and should not be
down-scaled or degraded before processing.

Methods Task #P Input Output MACs(G) FLOPs(G) Latency(Platform)
EfficientFormer [59] Classification 37.1M 224× 224 - 3.57 - 4.2ms(iPhone 12 NPU)

LightViT-B [38] Classification 35.2M 224× 224 - - 3.9 1.2ms(V100 GPU)
SYENet(Ours) SR×2 4.9K 960× 540 1920× 1080 - 2.83 16.5ms(Qualcomm Snapdragon mobile SoC)

Table 8: It is obviously shown from the comparison between SYENet and efficient networks for high-level vision task that
low-level vision task is more challenging as it requires much fewer parameters to achieve real-time inference due to the large
input and output size.

Two typical examples of efficient high-level vision networks are EfficientFormer [59] and LightViT [38]. With 37.1 million
parameters, EfficientFormer Supernet could still achieve an extremely low latency of 4.2ms on iPhone 12 NPU. While, as
shown in Table 8, our proposed method with only 4.9k parameters could only reach a latency of 16.5ms on Qualcomm
Snapdragon mobile SoC due to the large input and output size.

G.2. Constraints of small memory bandwidth of mobile devices

Information Multi-distillation Block IMDB [39] is widely utilised in the efficient SR challenges [50] by many participators
as well as the winning teams in some years. However, the structure of IMDB involves a serious disadvantage for mobile
devices as it requires the network to store the results generated by each step which should be concatenated after all the steps
are done. Therefore, during the inference, once the memory is too small, and consequently data transfer between the memory
and disk occurs, the latency shall be seriously enlarged. Thus, keeping memory usage small is another challenge for low-level
vision tasks. This is also the reason that the structure of IMDB is not employed in SYENet.

G.3. The influence of network depth towards network latency

The tradeoff between the network depth and kernel size is shown in Table 9. Apparently, one 5× 5 convolution requires
more numerical calculations than two 3× 3 convolutions. However, as indicated by Table 9, deeper networks have more data
transfer operations between DRAM and local SRAM when the feature map size is too huge. Thus, the larger depth will also
enlarge the latency as well. Sometimes, the influence of depth could be even larger than FLOPs in certain platforms due to the

inconsistency between hardware acceleration policies and network structures. Therefore, taking the hardware acceleration
policies into consideration is also vital for designing the network structure.

Methods PSNR Latency(ms) MAIISP Score
CONV5×5 24.8732 11.4 16.57

CONV3×3 → CONV3×3 24.8824 12.9 14.83
CONV3×3 → PReLU → CONV3×3 24.9349 13.4 15.35

Table 9: Depth-kernel size tradeoff: tested on MAI ISP dataset

H. Disadvantage of SYENet on VSR task
The experiment results of SYENet on Video SR problems are very unsatisfactory, which is even worse than that of SISR.

As suggested by BasicVSR [6], the VSR network should have four modules which are propagation, alignment, aggregation,
and upsampling. Since SYENet is too small to implement the propagation and alignment module, SYENet could not utilise
the information of neighboring frames to enhance the VSR performance. In fact, the neighboring frames injected into SYENet
actually impair the restoration as they provide misaligned pixel information that SYENet cannot make good use of.

I. More low-light enhancement comparisons
The images are shown in Fig. 9.

J. More image signal processing comparisons
The images are shown in Fig. 10.

K. More Feature maps by each branch
The images are shown in Fig. 11.

Figure 9: Low-light enhancement comparisons

Figure 10: Image signal processing comparisons

Figure 11: Feature maps of each branch and fused result

