Semantify: Simplifying the Control of 3D Morphable Models using CLIP:
Supplementary Material

1. Background

In this paper, we focus our experiments on four main
3D Morphable Models and their variants. FLAME [1] is
a 3DMM for human heads which consists of identity and
expression spaces, using N = 5023 vertices along with 4
joints. Similarly, SMPL and SMPLX [2] model human bod-
ies using shape and expression spaces, with 23 joints and
N = 6890 vertices (SMPL), or 54 joints and N = 10,475
and vertices (SMPLX). SMAL [3] was constructed using
3D scans of toy animals, and can represent a continuous
space of animal shapes.

1.1. FLAME

FLAME uses standard vertex-based LBS with correc-
tive shape, with N=5023 vertices and K=4 joints and is de-
scribed by a function M that returns N vertices:
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Where (3, 60,1 represent the coefficients of the shape, pose
and expression respectively. The variations in the shape of
different subjects are modeled by linear blendshapes as:
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where 3 = By ey ﬁl EI]T denotes the shape coefficients

and S =[5, ..., S\B\] € R3V %13l denotes the orthonormal
shape basis. Similarly, the expression blendshapes are mod-
eled by linear blendshapes as
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where z/_; = [t1, ..y 1/)| JI]T denotes the expressions co-

efficients, and e = [En,...,E ;] € R3VXI¥I denotes the
orthonormal expression basis. In this paper we use the first
10 principal components of the shape E and the first 10 prin-
cipal components of the expression 1/7

1.2. SMPL/SMPL-X

SMPL-X stands for SMPL eXpressive, with shape pa-
rameters trained jointly for the face, hands and body. Simi-
larly to FLAME, SMPL-X uses standard vertex-based LBS
with learned corrective blendshapes, with N=10,475 ver-
tices and K=54 joints and is described by a function M that
returns N vertices:
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Where (3, 0, ¢ represent the coefficients of the shape, pose
and expression respectively, and the shape blendshapes
function is the same as (1). In this paper, we use the first
10 principal components of the shape /.

1.3. SMAL

Analogous to SMPL, the SMAL function is also defined
by M(3,0,~) such that (3,6, represent the shape, pose
and translation respectively. £ is a vector of the coefficients
of the learned PCA shape space, § € R3™ = {r;} | is the
relative rotation of the N=33 joints in the kinematic tree,
and +y is the global translation applied to the root joint. The
SMAL function returns 3D mesh’s vertices, where the tem-
plate model is shaped by 3, articulated by 6 through LBS,
and shifted by . In this paper, we use the first 10 principal
components of the shape ﬁ .

2. Word Descriptors

We provide our initial sets of descriptors for each one
of the models. Colored words represent the final set of de-
scriptors that were chosen by our method.

2.1. Body

The color coding is blue for SMPLX, red for SMPL, and
cyan when the word was chosen for Both models.

Male model: short, tall, long legs, big, fat, broad shoul-
ders, built, curvy, fit, heavyset, lean, long torso, long, mus-
cular, pear shaped, petite, proportioned, rectangular, round
apple, short legs, short torso, skinny, small, stocky, strudy,
narrow waist, thin.



Female model: fat, thin, hourglass, short, long legs, nar-
row waist, skinny, tall, broad shoulders, pear shaped, aver-
age, big, curvy, lean, proportioned, sexy, fit, heavyset, pe-
tite, small.

Neutral model: short, tall, long legs, big, fat, curvy, fem-
inine, fit, heavyset, lean, long torso, long, masculine, mus-
cular, pear shaped, petite, proportioned, rectangular, round
apple, short legs, short torso, skinny, small, stocky, strudy,
attractive, sexy, narrow waist, hourglass.

2.2. Face Model

The color coding is cyan for the chosen descriptors.

Shape: fat, thin, long neck, big forehead, nose sticking-
out, ears sticking-out, small chin, long head, chubby cheeks,
big head.

Expression: happy, sad, angry, surprised, disgusted, fear-
ful, neutral, smiling, serious, pensive, confused, bored,
sleepy, tired, excited, relaxed, calm, nervous, worried,
scared, open mouth, raise eyebrows, open eyes, smile.

2.3. Animals Model

The color coding is cyan for the chosen descriptors.

Shape: hippo, donkey, horse, cow, lion,cat, dog.

3. CLIP-Based Optimization

To estimate how a single descriptor will affect the
3DMM with respect to CLIP’s semantic understanding, we
ran CLIP-based optimization experiments. Figure | demon-
strates the optimization’s results with respect to “smile” de-
scriptor on FLAME model. This method was not a good
estimation for the effect of the descriptors for two reasons:

1. In our method CLIP is used for rating (that is, we use
CLIP’s scores for a given image that has already been
deformed and a given set of descriptors), rather than
using CLIP as to edit the mesh using its semantic un-
derstanding of a given set of descriptors.

2. CLIP-based optimization optimizes a single descriptor
each time (feeding multiple descriptors together may
enforce putting them in a sentence to optimize CLIP’s
performance), therefore the relations that appear be-
tween descriptors in our model could not be foreseen
by using this method.
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Figure 1. CLIP-based optimization visualization by iteration

4. Clustering

Prior to clustering the images in CLIP embedding
space’s dimension, we used Uniform Manifold Approxima-
tion and Projection (U-MAP) to reduce the dimension of
the data in order to visualize it and verify that close images
resemble each other and distant images differ (an example
for such visualization could be found in Figure 2).
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Figure 2. Clustering the encoded images after reducing the dimen-
sion by U-Map

5. Manually Tuned Model

Our goal in this paper was to present a novel general
method for mapping the semantic representation to its para-
metric counterpart without human-in-the-loop. As noted in
our conclusions, our method relies mainly on the data that is
generated to train the Mapper, therefore, outliers in the data
(which in 3D meshes corresponds with “broken” meshes)
would probably lead to a degradation in the Mapper’s per-
formance. A case-specific solution might produce a better
performance since images could be created manually or in a
more supervised and case-specific manner. Some examples
of such an implementation:

* When using SMAL model, by sampling instances ran-
domly, it is hard to generate instances from the Hip-
popotamidae family (without “breaking” the mesh),
whereas generating it non-randomly is quite an easy
task.



number of descriptors ‘ number of samples

2 5 6* 10 15 ‘ 1K 3K* 10K
Error (cm) 0.0372 0.0219 0.0233 0.0087 0.0047 | 0.0247 0.0233 0.0154
Steps 568 2402 2684 3769 4679 2932 2684 4034

Table 1. Model expressiveness ablation study. These are ablations of different mappers that were trained on various numbers of descriptors
and different numbers of samples. Columns with * represent our final configurations. Steps indicate the average number of steps that took
the optimization process to converge. The error is evaluated on a scale of cm. Although 15 descriptors results in the lowest error, the
semantic meaning of the descriptors degrades due to correlations between the descriptors.
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Figure 3. Example for the correlation between shape descriptors (in this case from FLAME 3DMM).

¢ For the zero-shot shape prediction from an image, it examples of such reviews:
is possible to fine-tune the Mapper by feeding extreme
instances or generating specific types of body shapes * When using application B, words are sometimes not
that would improve the predictions. clear or not relevant, while on the other hand, clear
and straightforward words such as “fat” and “thin” are
In addition, using Semantify as zero-shot predictor of missing.
shape from images allows the user to easily fine-tune the
results and reach a better fit as can be seen in the examples * Application B’s sliders are not “frozen”, so occasion-
in Figure 4 where fine-tuning of around one minute was ap- ally when changing one slider it affects the other,
plied to the zero shot results. which causes the user to start all over again.
6. User Study - Feedbacks  In terms of user experience using the different sliders,
application A was far more comfortable to use than B.
We asked the users to provide us with feedback on their It was clearer what was meant to be the effect of each
experience of using both applications as a tool to fit a 3D slider, and each change influenced that specific body

shape (A was ours, B was the alternative). Here are more feature alone. Conversely, application B every minor



change in a certain slider generated major changes in
the rest of the sliders in a way that made it more diffi-
cult to control the result. The abundance of sliders on
application B only made it harder to control, not the
other way around. Ultimately, application B created a
figure which was less muscular, and paid little atten-
tion to detail in regards to the body curves and body
fat. Overall, the results were undeniably better in ap-
plication A.

 Trying out the application B ... even the slightest touch

of a single slider that was intended to get me closer to
my desired goal, prompted a significant change in 10
different sliders which completely and utterly ruined
what I was aiming for. To the contrary, the experience
with application A was far friendlier and I sensed as
though I maintained much more control over the dif-
ferent body features. With regards to the final results,
you just can’t draw a comparison. Juxtaposing the two
finalised models makes it humorously obvious that ap-
plication A wins by a landslide.

Number of samples used for training the model

1k 3k* 7k 10k
Error (cm) 0.0026 0.0027 0.0022 0.0025
Steps 2850 1203 4618 2328
Number of descriptors used in the model
2 5 6* 10 15
Error (cm) 0.003 0.0028 0.0027 0.0023 0.002
Steps 1813 1466 1203 4795 4999

Table 2. Ablation results on 10 meshes that were registered to
range scans from CAESER dataset, we used chamfer distance
as an objective to fit our sementified sliders with our pretrained
mapper to the GT mesh. The real-world captured shapes from
CAESER dataset on our SMPL-X male mapper.

References

(1]

(2]

(3]

Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li,
and Javier Romero. Learning a model of facial shape
and expression from 4D scans. ACM Transactions
on Graphics, (Proc. SIGGRAPH Asia), 36(6):194:1—
194:17, 2017.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas,
and Michael J. Black. Expressive body capture: 3D
hands, face, and body from a single image. In Pro-
ceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 10975-10985, 2019.

Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and
Michael J. Black. 3D menagerie: Modeling the 3D

shape and pose of animals. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), July 2017.



0.1652 0.0954 0.1495

"
- - 1‘ -
| N
0.1832 0.0940 0.1464

k|
0.1824 0.1089 0.1496
‘\‘\!f‘ -

1\ |
|
| R |

before after shapy

Figure 4. Zero-Shot Image to Shape Reconstruction task with fine-tuning the predicted shape with respect to the image using our interactive
application. The initial prediction is on the left, then the fine-tuned shape and on the right is SHAPY’s prediction. Fine tuning takes around
1 minute.



