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A. Implementation Details
For the CIFAR100 dataset, we adopt the SGD optimizer

and employ a learning rate schedule that initially increases
from 0.001 to 0.4 within the first 10 epochs and then de-
creases to 0.001 at 500 epochs using a cosine annealing
schedule. Our batch size is 512. We are re-implementing
NCL [5] on the CIFAR100-50 setting using their publicly
available code, and we cite all other results from their pub-
lished work.

As for the three fine-grained datasets, we use the Adamw
optimizer, and our learning rate scheduling involves an ini-
tial increase from 0.0001 to 0.001 within ten epochs, fol-
lowed by a decrease to 0.0001 at 100 epochs using a cosine
annealing schedule. We utilize a batch size of 512 for all
methods and reimplement the results of GCD [4] using the
code they provided.

To enhance the performance of our clustering approach
and for a fair comparison, we also employed a multi-head
technique similar to UNO. We used four heads for the CI-
FAR100 dataset and two heads for the remaining three fine-
grained datasets. Our novel class head includes a Multilayer
Perceptron (MLP) and a cosine classifier.

Moreover, we determine the hyperparameter β through
the validation set on the known class.

B. More visualization
To demonstrate the efficacy of our model, we selected

the five representative novel classes and analyzed their re-
lationships with known classes. The top four classes were
selected based on their similarity to known classes, ordered
from high to low, while the last class “wardrobe,” was se-
lected from special novel classes that will often appear in
images together with some known classes. As shown in
Fig.1, in many cases, the distributions generated by the su-
pervised trained model have strong semantic information.
Furthermore, the plot indicates that our model can better
maintain relations between the novel and known classes
than the baseline model(UNO). What’s more, we analyze
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on the fine-grained datasets. As shown in figure, our model
can inherit the relationship between the “Spitfire” class and
known classes captured by the supervised trained model,
while the baseline model loses this ability. Specifically, our
model can capture the common characteristics of the Spit-
fire, C-47, C-130, and Cessna 208, such as propellers and
forward wings. It also recognizes the unique color present
in both the Spitfire and C-47. In contrast, the baseline model
basically regards all known classes as the same. This shows
that our model can well capture the potential relationship
between novel classes and known classes on fine-grained
datasets.

In addition, we present a comparative analysis of the ac-
curacy of our model and the baseline model for each novel
class. Fig.3 demonstrates that our model’s predictions are
more accurate than the baseline model in almost all classes.

C. More experiments without pre-trained
model

We conduct experiments on fine-grained datasets with
ResNet18 from scratch. As the Tab.1 shows, we still
achieve sizeable improvement over existing methods, 2.1%
on Stanford Cars, 1.8% on CUB, and 6.0% on Aircraft. This
demonstrates that our method is also effective without pre-
trained models.

Table 1. Pre-train ResNet18 on known classes, and then train on
known+novel classes. Both stages are trained for 200 epochs.

Method Stanford Cars CUB Aircraft

RankStats+ 17.7 20.2 30.1
NCL 27.1 24.7 36.7
UNO 25.2 24.5 37.8
Ours 29.2 26.5 43.8

D. Temperature hyperparameter T analysis
We conducted an in-depth analysis of the temperature T

as presented in S2. The results indicate that temperatures
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Figure 1. Visualization of quantified relative relationships. The bar
labels represent the known classes in the CIFAR100-50 setting.
Each plot shows average predictions for instances of a novel class
on the known class head. In most cases, our model’s predictions
are more similar to the supervised trained model’s predictions than
the baseline model’s predictions.

1, 2, 4, and 6 yield satisfactory performance, demonstrating
the robustness of our model with respect to the temperature
hyperparameter. Taking into consideration the established

Figure 2. Visualization of relative relationships on Aircraft.

Table 2. Results on CIFAR100-50 with different temperature.

Temperature 1 2 4 6 8

Novel Acc 65.4 66.8 65.3 66.2 61.6

practices in knowledge distillation [1, 3], where the temper-
ature is often set to 4, we have chosen this value for our
model.

E. Learnable weight function
In the ablation study, we analyze various designs of our

learnable weight function and demonstrate the superior-
ity of our approach. However, the theoretically learnable
weight function may have a degenerate solution, where the
maximum weight is assigned to the sample with the small-
est KL. Achieving this degenerate solution in practice is
challenging due to the random selection of samples in each
batch. Additionally, as shown in Fig.4, the mean statistics
of eta remain relatively stable when the batch size is large.

F. Discussion with NCDwF [2]
In NCDwF, they focus on novel class discovery without

forgetting, where known class data is not available in the
discovery stage. To transfer knowledge, they introduce a
mutual information regularization term for novel classes to
couple the learning of labeled head to unlabeled head and
expect to transfer semantic knowledge from known classes
to novel classes. Meanwhile, known and novel classes still
share a feature extractor. Differently, we transfer knowl-
edge from a known classes pretrained model to a discov-
ery trained model and expect the discovery trained model to
maintain meaningful class relations. What’s more, we also
develop a simple and effective learnable weight function,
which adaptively promotes knowledge transfer based on the
semantic similarity between the novel and known classes.
In addition, the outstanding results on a challenging dataset
in Tab.3 show the superiority of our method. In conclusion,
our method is totally different from NCDwF.
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Figure 3. The difference between the accuracy of our model and the UNO model on each novel class.
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Figure 4. The mean of η for different weight function g(η).

Method CIFAR100-80 CIFAR100-50

UNO 90.4 60.4
NCDwF 91.3 61.2

Ours 91.2 65.3

Table 3. The results on CIFAR100 dataset under the same setting.
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