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1. Background Knowledge

Entropy: Entropy is a basic concept in information the-
ory that represents a random variable as a measure of un-
certainty [17]. For example, H(X) denotes the entropy of
a random distribution X .

Transfer Entropy: Transfer entropy is a measure of the
amount of information transferred by two stochastic pro-
cesses. The transfer of stochastic process X to stochastic
process Y is achieved by knowing the past of X to reduce
the uncertainty of the future of Y , where the information is
measured by entropy [2], formally:

TX→Y = H(Yt|Yt−1:t−L)−H(Yt|Yt−1:t−L, Xt−1:t−L).
(1)

Eqn. 1 is equivalently transformed to conditional mutual in-
formation, formally:

TX→Y = I(Yt;Xt−1:t−L|Yt−1:t−L). (2)

Mutual Information Estimation: Mutual information(MI)
is the reduction of uncertainty in one random variable due
to the knowledge of another random variable [1, 7]. Specif-
ically, it is the information obtained from one random vari-
able through another random variable. For two random vari-
ables X and Y , the joint probability distribution is p(X,Y ).
The mutual information between X and Y is given by,

I(X;Y ) =

∫
dxdy p(X,Y ) log(

p(X,Y )

p(X)p(Y )
). (3)
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Mutual information is equivalently represented as,

I(X;Y ) =
∑
x,y

p(x, y) log(
p(x, y)

p(x)p(y)
)

=
∑
x,y

p(x, y) log(
p(x, y)

p(x)
)−

∑
x,y

p(x, y) log p(y)

=
∑
x,y

p(x)p(y|x) log(p(y|x))−
∑
x,y

p(x, y) log p(y)

= −
∑
x

p(x)H(Y |X = x)−
∑
y

log p(y)p(y)

= H(Y )−H(Y |X).
(4)

where, H(X) is the marginal entropy, H(X|Y ) is the con-
ditional entropy, H(X,Y ) is the joint entropy of X and
Y . Thus, I(X;Y ) equals H(X) −H(X|Y ) and H(X) −
H(X|Y ) [1, 7].

Due to the high-dimensional feature vector, it is diffi-
cult to accurately compute the mutual information between
two variables. Thus, the mutual information of two random
variables X and Y can be represented by Kullback-Leibler
divergence [5], formally:

I(X;Y ) =DKL(p(X,Y )||p(X)⊗ p(Y ))

=Ep(X,Y )
[F ]− logEpX⊗pY

[eF ],
(5)

where, p(X,Y ) is the joint probability distribution of X and
Y , all functions F such that both expectations are finite.
Since the mutual information of high-dimensional vectors
is difficult to compute, to solve the Eqn. 5, we use neural
network to estimate the maximum lower bound [1, 7].

I(X;Y ) ≥Î((X;Y ), ϑMI)

=E(F((X;Y )), ϑMI)− logE[eF((X;Y ),ϑMI)].
(6)

Here, ϑMI refers to a neural network to estimate mutual
information between X and Y .
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Table 1. Few-shot continual classification performance of state-of-the-art methods and our FCIL on the CUB200 [16] dataset. The results
with * are obtained from the authors’ published code. FCIL outperforms second place by 2.02% in terms of the final accuracy and by
1.41% in terms of the Avg and by 1.35% in terms of the KR.

Methods Accuracy in each session (%) ↑ KR↑ ∆Final↑ Avg↑1 2 3 4 5 6 7 8 9 10 11
Ft-CNN 68.68 43.7 25.05 17.72 18.08 16.95 15.1 10.6 8.93 8.93 8.47 12.33 +50.01 22.02
NCM [8] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 28.93 +38.61 32.49
iCaRL [12] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 30.80 +37.32 36.67
EEIL [3] 68.68 53.63 47.91 44.2 36.3 27.46 25.93 24.7 23.95 24.13 22.11 32.19 +36.37 36.27
TOPIC [14] 68.68 62.49 54.81 49.99 45.25 41.4 38.35 35.36 32.22 28.31 26.28 38.26 +32.20 43.92
SPPR [21] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 54.35 +21.15 49.32
Decoupled-DeepEMD [18] 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60 63.17 +10.88 58.73
Decoupled-NegCosine [11] 74.96 70.57 66.62 61.32 60.09 56.06 55.03 52.78 51.50 50.08 48.47 64.66 +10.01 58.86
Decoupled-Cosine [15] 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 65.29 +9.17 59.36
CEC [19] 75.8 71.94 68.5 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28 68.97 +6.20 61.33
MateFSCIL [4] 75.9 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.83 52.64 69.35 +5.84 61.93
FACT* [20] 77.38 73.91 70.32 65.91 65.02 61.82 61.29 59.53 57.92 57.63 56.46 72.95 +2.02 64.29
FCIL(Ours) 78.70 75.12 70.10 66.26 66.51 64.01 62.69 61.00 60.36 59.45 58.48 74.30 65.70

Table 2. Few-shot continual classification performance of state-of-the-art methods and our FCIL on the CIFAR100 [10] dataset. The results
with * are obtained from the authors’ published code. FCIL outperforms second place by 0.7% in terms of the final accuracy and by 0.15%
in terms of the Avg and by 0.2% in terms of the KR.

Methods Accuracy in each session (%) ↑ KR↑ ∆Final↑ Avg↑1 2 3 4 5 6 7 8 9
Ft-CNN 64.10 36.91 15.37 9.8 6.67 3.8 3.7 3.14 2.65 4.13 +49.37 16.24
iCaRL [12] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 21.41 +38.65 32.87
NCM [8] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 21.12 +38.48 34.22
EEIL [3] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 24.72 +36.17 33.79
TOPIC [14] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 45.81 +22.65 42.62
Decoupled-DeepEMD [18] 69.75 65.06 61.20 57.21 53.88 51.40 48.80 46.84 44.41 63.67 +7.61 55.39
Decoupled-NegCosine [11] 74.36 68.23 62.84 59.24 55.32 52.88 50.86 48.98 46.66 62.73 +5.36 57.71
Decoupled-Cosine [15] 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68 63.95 +4.34 58.23
CEC [19] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 67.25 +2.61 59.53
MateFSCIL [4] 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 67.07 +2.05 60.79
C-FSCIL Mode1(d=512) [6] 77.47 72.20 67.53 63.23 59.58 56.67 53.94 51.55 49.36 63.71 +2.66 61.28
C-FSCIL Mode2(d=512) [6] 77.50 72.45 67.94 63.80 60.24 57.34 54.61 52.41 50.23 64.81 +1.79 61.84
C-FSCIL Mode3(d=512) [6] 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47 65.14 +1.55 61.64
FACT* [20] 78.44 72.33 68.23 63.90 60.58 58.20 55.96 53.59 51.32 65.43 +0.70 62.51
FCIL(Ours) 77.12 72.42 68.31 64.47 61.18 58.17 56.06 54.19 52.02 67.45 62.66

2. Datasets and other results
2.1. Datasets

CIFAR100: CIFAR100 [9] contains 100 classes with a
total of 60,000 RGB images with the size 32×32, and each
class contains 500 training images and 100 test images.

CUB200: CaltechUCSD Birds-200-2011(CUB200) [16]
is a fine-grained classification dataset, which contains
11,788 images in 200 classes, each image size is 224×224.

miniImagenet: miniImageNet [13] is a subset of Ima-
geNet, which contains 100 classes with 60,000 images, and
each image size is 84× 84.

2.2. Results of other datasets

In the main paper, we report the detailed performance
of the miniImageNet. We report the performance of the
CUB200 [16] and CIFAR100 [10] in Table 1 and Table 2.
We can infer that our proposed FCIL has better final accu-
racy, Avg and KR, indicating FCIL better than state-of-the-
art methods.

Algorithm 1 Few-shot Continual Infomax Learning (FCIL)
Require: the training sets {(Xt, Yt)|t = 1, · · · , T}, the

number of previous sessions K.
Ensure: the final model Θ and ϑ.

1: while t = 1, 2, . . . , T do
2: if t = 1 then
3: Optimize the base network Θbase and the MI net-

work ϑMI on the training set (X1, Y1);
4: Construct base class structure S(At, Rt);
5: else
6: # for the t-th session data
7: Learn new-class model Θt

fc by feature embedding
infomax LFEI ;

8: Update class structure S(At, Rt);
9: Update the classifier Θfc by performing continual

structure infomax LCSI ;
10: end if
11: end while
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