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1. Full Anomaly Detection and Localization Results on MVTec AD, VisA, and MPDD Datasets.
This section provides more detailed results for all sub-categories on MVTec AD [10], VisA [16], and MPDD [7] datasets.

In MVTec AD, we report image-level I-AUC for anomaly detection in Tab. 1 and pixel-level P-AUC and P-PRO for anomaly
localization in Tab. 2. It is observed that the proposed MemKD outperforms its SOTA competitors, i.e., memory-bank-based
PatchCore [11] and knowledge-distillation-based RD [5] on the majority of categories and performs best in average.

Tab. 3 (a) and (b) present the results for each subset of VisA and MPDD datasets, respectively. We observe that our
MemKD outperforms the SPD [16] in Tab. 3 (a) by a large margin not only on the most difficult cases i.e., Macaroni1,
Macaroni2, Capsules, and Candles but also on other relatively easier cases. In Tab. 3 (b), although RD [5] outperforms our
method on P-AUC by 0.3%, the proposed MemKD significantly improves the baseline on metrics like I-AP and I-AUC.

Category/Method MKD [12] US [1] DA [6] MF [15] PaDiM [4] CutPaste [9] DRAEM [13] CFA [8] RD [5] PatchCore [11] Ours

Te
xt

ur
es

Carpet 98.1 91.6 86.6 94.0 99.8 97.0 93.9 97.3 98.9 98.7 99.6
Grid 78.0 81.0 95.7 85.9 96.7 100.0 99.9 98.2 100.0 98.2 100.0
Leather 95.1 88.2 86.2 99.2 100.0 100.0 100.0 99.0 100.0 100.0 100.0
Tile 91.6 99.1 88.2 99.0 98.1 94.6 99.6 98.4 99.3 98.7 100.0
Wood 94.3 97.7 98.2 99.2 99.2 99.1 99.1 99.7 99.2 99.2 99.5
Average 87.7 91.5 91.0 95.5 98.8 97.5 98.5 98.5 99.5 99.0 99.8

O
bj

ec
ts

Bottle 99.4 99.0 97.6 99.1 99.9 98.2 99.2 100.0 100.0 100.0 100.0
Cable 89.2 86.2 84.4 97.1 92.7 81.2 92.8 99.8 95.0 99.5 99.2
Capsule 80.5 86.1 76.7 87.5 91.3 98.2 98.5 97.3 96.3 98.1 98.8
Hazelnut 98.4 93.1 92.1 99.4 92.0 98.3 100.0 100.0 99.9 100.0 100.0
Metal Nut 73.6 82.0 75.8 96.2 98.7 99.9 98.7 100.0 100.0 100.0 100.0
Pill 82.7 87.9 90.0 90.1 93.3 94.9 98.9 96.9 97.3 96.6 98.3
Screw 83.3 54.9 98.7 97.5 85.8 88.7 94.9 97.3 97.0 98.1 99.1
Toothbrush 92.2 95.3 99.2 100.0 96.1 99.4 100.0 100.0 99.5 100.0 100.0
Transistor 85.6 81.8 87.6 94.4 97.4 96.1 94.1 100.0 96.7 100.0 100.0
Zipper 93.2 91.9 85.9 98.6 90.3 99.9 100.0 98.6 98.5 99.4 99.3
Average 87.8 85.8 88.8 96.0 93.8 95.5 97.8 99.2 98.0 99.1 99.5

Total Average 87.8 87.7 89.5 95.8 95.5 96.1 98.1 98.7 98.4 99.2 99.6

Table 1. Quantitative results for anomaly detection on MVTec AD [10]. We report comparison results on each class for anomaly detection.
Methods achieving the top I-AUC (%) are highlighted in bold.

2. Forward Distillation with the Proposed Framework
Apart from the reverse distillation paradigm [5], we also apply the proposed framework to the forward distillation [12],

which adopts a dual encoder architecture. Here, memories play a role in providing normality for encoders. Specifically, we
exploit the WideResNet50 as the teacher and the vanilla ResNet50 as the student. Features from stage1 to stage3 are used
for AD, and two NR Memory modules (M1 and M2) are inserted after the first two stages. Fig. 1 demonstrates its detailed
structure.



Category/Method MKD [12] US [1] MF [15] SPADE [3] PaDiM [4] RIAD [14] CP [9] RD [5] PatchC. [11] Ours

Te
xt

ur
es

Carpet 95.6/- -/87.9 -/87.8 96.5/93.7 99.1/96.2 96.3/- 98.3/- 98.9/97.0 99.0/96.6 99.1/97.5
Grid 91.8/- -/95.2 -/86.5 92.7/85.7 97.3/94.6 98.8/- 97.5/- 99.3/97.6 98.7/96.0 99.2/96.9
Leather 98.1/- -/94.5 -/95.9 96.6/96.2 99.2/97.8 99.4/- 99.5/- 99.4/99.1 99.3/98.9 99.5/99.2
Tile 82.8/- -/94.6 -/88.1 86.4/74.9 94.1/86.0 89.1/- 90.5/- 95.6/90.6 95.6/87.3 95.7/91.1
Wood 84.8/- -/91.1 -/84.8 87.5/86.4 94.9/91.1 85.8/- 95.5/- 95.3/90.9 95.0/89.4 95.3/91.2
Average 90.6/- -/92.7 -/88.6 91.9/87.4 96.9/93.2 93.9/- 96.3/- 97.7/95.0 97.5/93.6 97.8/95.2

O
bj

ec
ts

Bottle 96.3/- -/93.1 -/88.8 97.4/91.5 98.3/94.8 98.4/- 97.6/- 98.7/96.6 98.6/96.2 98.8/97.1
Cable 82.4/- -/81.8 -/93.7 96.2/89.9 96.7/88.8 84.2/- 90.0/- 97.4/91.0 98.4/92.5 98.3/93.4
Capsule 95.9/- -/96.8 -/87.9 98.0/92.7 98.5/93.5 92.8/- 97.4/- 98.7/95.8 98.8/95.5 98.8/96.2
Hazelnut 94.6/- -/96.5 -/88.6 98.1/91.4 98.2/92.6 96.1/- 97.3/- 98.9/95.5 98.7/93.8 99.1/95.7
Metal Nut 86.4/- -/94.2 -/86.9 97.1/91.4 97.2/85.6 92.5/- 93.1/- 97.3/92.3 98.4/91.4 97.2/90.8
Pill 89.6/- -/96.1 -/93.0 95.5/89.6 95.7/92.7 95.7/- 95.7/- 98.2/96.4 97.4/93.2 98.3/96.6
Screw 96.0/- -/94.2 -/95.4 97.9/90.0 98.5/94.4 98.8/- 96.7/- 99.6/98.2 99.4/97.9 99.6/98.2
Toothbrush 96.1/- -/93.3 -/87.7 96.9/92.5 98.8/93.1 98.9/- 98.1/- 99.1/94.5 98.7/91.5 98.9/92.2
Transistor 76.5/- -/66.6 -/92.6 93.1/86.4 97.5/84.5 87.7/- 93.0/- 92.5/78.0 96.3/83.7 96.4/85.3
Zipper 93.9/- -/95.1 -/93.6 95.5/91.6 98.5/95.9 97.8/- 99.3/- 98.2/95.4 98.8/97.1 98.5/95.9
Average 90.8/- -/90.8 -/90.8 96.6/93.4 97.8/91.6 94.3/- 95.8/- 97.9/93.4 98.3/93.3 98.4/94.1

Total Average 90.7/- -/91.4 -/90.1 95.5/90.7 97.5/92.1 94.2/- 96.0- 97.8/93.9 98.1/93.4 98.2/94.5

Table 2. Quantitative results for anomaly localization of P-AUC and P-PRO on MVTec AD [10]. P-AUC represents the pixel-wise com-
parison, while P-PRO focuses on region-based behavior. The best results for them are in bold. Remarkably, our approach is robust and
presents state-of-the-art performance under both metrics.

SPD [16] Ours
I-AP I-AUC P-AP P-AUC P-PRO I-AP I-AUC P-AP P-AUC P-PRO

PCB1 83.5 86.8 13.1 96.4 - 99.7 96.9 82.1 99.8 96.9
PCB2 76.9 76.6 9.6 96.3 - 94.8 98.0 25.2 96.0 94.9
PCB3 72.0 72.2 10.5 96.2 - 99.1 97.8 35.6 99.3 96.6
PCB4 93.8 95.2 8.5 86.7 - 98.6 99.8 44.3 98.6 99.9

Macaroni1 74.4 75.7 3.4 97.7 - 99.6 98.0 23.2 99.6 92.7
Macaroni2 62.3 66.8 0.6 94.3 - 99.2 92.0 13.0 99.5 84.8
Capsules 72.5 62.0 2.7 87.5 - 99.0 94.7 58.2 99.2 88.2
Candles 83.7 85.3 3.5 93.7 - 99.1 95.9 23.1 99.0 93.8
Cashew 93.8 86.6 9.5 86.3 - 98.7 99.4 58.2 96.6 97.5

Chewing Gum 98.2 96.7 28.5 97.0 - 99.1 99.8 60.3 98.6 98.8
Fryum 89.4 83.6 11.7 89.0 - 97.0 98.8 49.3 96.9 96.6

Pipe Fryum 93.6 87.1 11.7 91.6 - 99.2 100.0 56.2 99.2 99.0
Mean 82.8 81.2 9.4 92.7 - 98.6 97.6 44.1 98.4 94.9

(a) Anomaly detection and localization performance on the VisA [16] dataset.
RD [5] Ours

I-AP I-AUC P-AP P-AUC P-PRO I-AP I-AUC P-AP P-AUC P-PRO
Bracket Black 92.0 86.0 12.1 98.0 94.6 94.4 91.2 10.7 97.8 94.5
Bracket Brown 95.2 91.9 25.3 97.6 95.6 97.3 95.2 20.5 96.3 95.2
Bracket White 85.9 82.0 1.3 98.6 93.5 93.8 92.7 15.9 98.8 97.3

Connector 100.0 100.0 66.0 99.5 97.5 100.0 100.0 60.6 99.4 96.4
Metal Plate 100.0 100.0 92.5 99.0 95.1 100.0 100.0 94.2 99.1 95.2

Tubes 98.6 96.3 76.1 99.2 95.9 98.5 96.2 74.9 99.2 97.3
Mean 95.3 92.7 45.5 98.7 95.3 97.3 95.4 46.1 98.4 95.9

(b) Anomaly detection and localization performance on the MPDD [7] dataset.

Table 3. Quantitative results on (a) VisA [16] and (b) MPDD [7] datasets. We report comparisons for each class. Best results are highlighted.

3. Additional Ablations
Study on different backbones. Tab. 4 illustrates qualitative comparisons of different backbones as the teacher network.

The default WideResNet50 has a stronger representative capacity since it is deeper and wider, which facilitates the precise
detection of anomalies. Built the proposed framework upon smaller neural networks such as ResNet18 and ResNet34, our
MemKD still owns competitive performance.

Study on distilled features. Features from multiple stages contain patch embeddings with different receptive fields and
can help the model identify anomalies from different levels. Tab. 5 explores their importance. We observe that combining S1

and S2 produces the worst results and S1 gives limited improvement to the combination of S2 and S3, implying that semantics
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Figure 1. Overview of MemMKD, which derives from applying the proposed framework to forward distillation [12] paradigm. Two
memory modules (M1 and M2) are inserted and dotted lines mean the normality embedding learning paths.

is more important. Overall, complementation of them helps cover various types of anomalies and thus exploiting them all
yields satisfactory results.

Backbone I-AUC P-AUC P-PRO
Res18 98.6 97.3 92.4
Res34 98.8 97.4 92.8
Res50 99.0 97.9 93.8

WideRes50 99.6 98.2 94.5

Table 4. Ablation study on different backbones.

Study on the number of NR memory. The inserted NR Memory modules (denoted as M1, M2, and M3) are responsible
for addressing the normality of the corresponding level. We study their importance in Tab. 6. Combining M2 and M3 has a
similar performance on I-AUC and P-AUC as that of the combination of M1 and M3. Nonetheless, the former outperforms
the latter by a clear margin on P-PRO. These observations imply that M2 is more powerful than M1. Without considering the
high-level normal information (M3), the model achieves the worst results. Overall, the high-level memory M3 plays a more
significant role and, no doubt, adopting them all contributes to the SOTA results.

S1 S2 S3 I-AUC P-AUC P-PRO√ √
98.6 97.3 93.8√ √
98.9 98.0 94.0√ √
99.0 97.9 94.3√ √ √
99.6 98.2 94.5

Table 5. Ablation study on distilled features.

M1 M2 M3 I-AUC P-AUC P-PRO√ √
99.0 97.9 94.3√ √
98.9 98.0 93.8√ √
98.6 97.3 93.3√ √ √
99.6 98.2 94.5

Table 6. Ablation study on the number of NR memory.

4. More Visualization on Anomaly Localization
We provide additional visualization on Eyecandies [2], MPDD [7] and VisA [16] benchmarks in Fig. 2 (a), (b) and (c),

respectively. The proposed MemKD accurately localizes tiny and conspicuous anomalies, e.g., the tiny hunch in the second
column of Fig. 2 (a) and the large scratches in the fourth column of Fig. 2 (b). Besides, on the more challenging VisA dataset,
it still gives satisfactory results, as shown in Fig. 2 (c). However, several issues exist. First of all, although the anomaly
mask is accurate, it is not precise enough compared to the ground truth, which is also observed in other unsupervised AD
methods [12, 5, 11]. We guess that the lack of supervision signals from anomalies results in imprecise localization results.
Second, some anomalies are imperceivable since the single modality of RGB data can not provide sufficient information for
anomaly detection, as demonstrated in the last columns of Fig. 2 (a).



(a) Visualization on Eyecandies [2] dataset. (b) Visualization on MPDD [7] dataset. (c) Visualization on VisA [16] dataset.

Figure 2. More qualitative results for anomaly localization on (a) Eyecandies [2] datasets, (b) MPDD [7] and (c) VisA [16]. From top
to bottom: RGB image, ground truth, and the predicted anomaly map. The MemKD localizes tiny and conspicuous anomalies in these
benchmarks. However, some anomalies can not be perceived only from the RGB data in the last two columns of (a).

5. Future Work
As mentioned in the paper, the RGB modality is insufficient to detect some geometrical anomalies. Therefore, considering

multiple modalities for anomaly detection may give better results. In addition, the parameters of pre-trained teachers need to
be fixed in both the training and testing phases, limiting the teacher’s representation capacity on the target benchmarks. We
believe that carefully devised adaptation methods would help produce better results.
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