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1. The DOLOS Dataset

In this section, we describe the data collection, process-
ing, and annotation procedure for the DOLOS dataset in
detail. The DOLOS dataset collection is comprised of the
extraction of video clips and annotation using the MUMIN
coding scheme.

1.1. Extraction of Video Clips

The gameshow episodes from multiple seasons were first
discovered on YouTube. To extract the relevant content
from each round of an episode, the speakers’ utterances
(in the form of video clips) were identified by their times-
tamps. The clips were selected based on specific criteria,
such as containing little noise and being of sufficient length
to convey meaningful information. Multiple clips could be
extracted from each round, all with the same veracity la-
bel. Python scripts were used to automate the download of
the clips from YouTube, using the timestamps as reference.
This process is described in more detail in Section 3.1 of the
main paper.

1.2. Data Annotation

The downloaded video clips were annotated manually
for facial and speech features described in the main paper
(Fig. 2 (b)). The annotations were a nested list of time in-
tervals for each feature. For example, in a 10s video clip, if
a speaker smiled during the intervals 3-5s and 7-9s, it was
marked as [[3,5],[7,9]].

To ensure consistency in the video clip extraction and
annotation tasks, we recruited six annotators and trained
them to identify effective video clips that met the require-
ments. After training, each annotator independently anno-
tated the first 10 episodes of the gameshow, and their results
were compared to eliminate any inter-annotator bias. We
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Figure 1. Qualitative comparison of DOLOS and Box of Lies
(BOL) datasets.

Modality Before After

Audio 0.53 0.67
Vision 0.47 0.63

Average 0.5 0.65
Table 1. Cohen’s Kappa scores for audio and visual feature anno-
tations on DOLOS.

compared the number of clips extracted and rectified any
differences in eligibility criteria through discussion. We
then measured the annotations for all extracted clips and
realigned any discrepancies between annotators. This pro-
cess was repeated until we achieved uniformity in clip selec-
tion and minimized any inter-annotator bias. The Cohen’s
Kappa scores for audio and visual features are reported in
Table. 1.

1.3. Human-level Prediction

We also compared the accuracy of the proposed method
on the DOLOS dataset with that of human participants from
the gameshow. We manually verified the prediction accu-
racy of the human participants. The deception detection
accuracy of the participants in the gameshow is 41.37%.



Note that in the gameshow, the human-level prediction was
the team captain’s decision but not an individual prediction.
The individual predictions could not be evaluated as not all
the members of the team did predictions. Therefore, we can
only regard this as a reference to human-level accuracy. Ac-
cording to Bond et. al [3], persons without training can dis-
tinguish deception behaviors from truthful ones with an ac-
curacy of 54%. In this paper, the proposed method achieved
an accuracy of 64.75% on DOLOS.

1.4. Comparison with Box of Lies

In this section, we qualitatively compared our DOLOS
dataset with the previous gameshow dataset Box of Lies
(BOL). Note that the BOL dataset was primarily anno-
tated for verbal (text) and MUMIN facial features using the
ELAN software [9] by human annotators. Directly using
this dataset for multimodal deception detection with visual
(face) and audio (speech) modalities faced the following
challenges.

In BOL, human annotators transcribed speech and anno-
tated facial features for each utterance interval, regardless
of any constraints mentioned in Section 3.2 of the main pa-
per. This means that even if there was background noise
or other distractions, the annotators still transcribed the text
and annotated the facial expressions. However, this posed
a greater challenge for the visual modality due to frequent
changes in the viewpoint between speakers and objects dur-
ing the gameshow, as illustrated in Fig 1 (a) and (c). This re-
sulted in either inconsistent or insufficient face frames when
extracting them from the video clips, as shown in Fig 1 (b).
For the cross-testing performance discussed in the main pa-
per Section 5.3, we cleaned the BOL dataset and used only
qualified samples for training in order to have a fair com-
parison with DOLOS.

DOLOS data collection constraints inherently prevented
the above problems and provided high-quality deceptive
samples as shown in Fig 1 (d). There might exist inevitable
centisecond level inaccuracies in capturing video clips due
to the higher frame rate and manual labeling. However, this
will not affect DOLOS providing high-quality deceptive
samples with clear speech audio and desired viewpoints.

2. Experiments
2.1. Data Pre-processing

Audio pre-processing. From the video clips, the raw
speech audio files were extracted as .wav files, which had
a sampling frequency of 44.1KHz. Using torchaudio [10]
library, the audio files were loaded as discrete audio sam-
ples and normalized to zero mean and unit variance. The
pre-trained 1D convolutional feature extractor in W2V2 ar-
chitecture [2] with a receptive field of 25ms and a stride
of 20ms was used as the audio feature extractor. This cor-

responds to 321.89 discrete audio samples for every audio
token. Based on these constraints, we resampled each audio
file to a fixed sample length of 64 × 321.81, for which the
convolutional feature extractor outputs precisely L = 64
tokens.

Visual pre-processing. By running MTCNN [11] face de-
tector on the video clips, the face frames were directly ex-
tracted at a rate of 25fps. For each video clip, we sampled
L = 64 face frames, resized them to 160× 160 pixels, and
normalized them to ImageNet normalization statistics mean
= [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

2.2. Model Details

W2V2. We used the W2V2 model pre-trained on the Lib-
rispeech Corpus [7] as backbone. The convolutional fea-
ture extractor in W2V2 extracted features with the size of
64× 512 and a linear projection layer with position embed-
ding projected the features to tokens with a dimension of
64× 768. We used the first four transformer encoder layers
of W2V2.

ViT. We adopted an ImageNet pre-trained ViT and dis-
carded the CNN patch extraction and position embedding
layers since they were originally designed for image clas-
sification tasks. For facial feature extraction, we utilized a
shallow 3-layer CNN with residual connections to extract
the feature vectors with the size of 64 × 256 for L = 64
face images, where L was the number of frames. Using a
linear projection and a position embedding layer, the face
features were projected to a space with the size of 64×768.
We adopted the first four encoder layers from ViT.

In deception detection, the temporal information in vi-
sual and audio features is important, as the deceptive cues
are dynamically present in the videos. Previous methods
usually focused on spatial information by adopting strong
pre-trained networks, e.g., VGG network pre-trained on
face images, and then applied shallow temporal layers such
as LSTM. However, this may not be sufficient as the tem-
poral information in earlier stages of feature extraction was
ignored. To better explore temporal attention, we applied
a shallow CNN feature extractor for spatial features and
more focused on improving temporal attention based on
transformer-based networks. We also considered the effi-
ciency of the method. With our best configuration of the
proposed method, where the model had four W2V2 and ViT
encoders, UT-Adapters, and four PAVF fusion modules, the
total number of parameters was 71.08M and the trainable
parameter was 5.06M.

2.3. Benchmarking

In this section, we describe the feature extraction
methodologies for benchmarking DOLOS and provide the
implementation details. The complete set of visual and au-



Visual Audio
Open Face [1] Affect [6] AU [1] MFCC [10] Open SMILE [4]

Eye Gaze and Pose Happy AU 1 - Inner brow raiser 28 Mel Filter Banks Feature Set eGeMAPSv02
Eye Landmarks Sad AU 2 - Outer brow raiser Sampling at 16 KHz Total = 88 features
2D Facial Landmarks Surprise AU 4 - Brow lowerer
Head Pose Fear AU 5 - Upper lid raiser

Disgust AU 6 - Cheek raiser
Anger AU 7 - Lid tightener
Contempt AU 9 - Nose wrinkler

AU 10 - Upper lip raiser
AU 12 - Lip corner puller
AU 14 - Dimpler
AU 15 - Lip corner depressor
AU 17 - Chin raiser
AU 20 - Lip stretched
AU 23 - Lip tightener
AU 25 - Lips part
AU 26 - Jaw drop
AU 28 - Lip suck
AU 45 - Blink

Table 2. Visual and audio features for DOLOS benchmarking

Features Feature Dimensions Projection Model
Open Face 64x262 ✓ 2 layer LSTM, I/O dim = 128, hidden dim=64

AU 64x36 ✓ 2 layer LSTM, I/O dim = 32, hidden dim=16
Affect 64x7 ✓ 2 layer LSTM, I/O dim = 8, hidden dim=8

MUMIN 1x25 MLP, hidden dim=16
RGB Face 64x3x160x160 ✓ Resnet18 with Avg Pooling, 2 layer LSTM, I/O dim = 128, hidden dim=64

MFCC Tx28 ✓ 2 layer LSTM, I/O dim = 32, hidden dim=16
Open SMILE 1x88 MLP, hidden dim=64

Table 3. Implementation details for DOLOS benchmarking

Method Backbone Fine-tuning Layers
(4) (3,4) (2,3,4) (All)

ACC (%) 59.00 57.87 58.30 58.83
F1 (%) 66.34 72.71 72.43 72.11

AUC (%) 56.78 51.13 52.06 53.02

No. of Parameters (M) 25.658 39.838 54.018 68.198

Table 4. Comparions on fine-tuning the different number of en-
coder layers on the backbone networks.

dio features used to benchmark DOLOS is presented in Ta-
ble 2. The OpenFace features and Action Units (AU) fea-
tures were extracted using the OpenFace toolkit [1]. The
facial affect (emotion) features were extracted using the Af-
fectnet [6] model, which continuously predicted the likeli-
hood of seven emotion categories. For audio, the Mel Cep-
stral Frequency Coefficients (MFCC) and OpenSMILE fea-
tures were extracted by using the OpenSMILE toolkit [5].
The dimension of the features and the model implementa-
tion details are presented in Table 3. For all features, a linear
classifier was used for deception detection.

2.4. Multi-task Learning

Due to limited space in the main paper, we are presenting
the complete results for multitask learning in Table 6. Our
findings indicate that utilizing all 25 visual-audio features
in multitask learning yielded the best performance among
the options evaluated. Fig. 2 displays the binary classifica-

tion accuracies obtained using these 25 MUMIN features.
Specifically, we observed that 11 features achieved an ac-
curacy of over 90%, 8 features scored between 80% and
90%, while 6 features performed below 80%. On average,
the 25 features yielded an accuracy of 85.78%.

2.5. Ablation Study

We conducted a preliminary ablation study to evaluate
the impact of fine-tuning different numbers of encoder lay-
ers of backbone networks (ViT and W2V2) on the perfor-
mance. As shown in Table 4, our observations revealed that
all fine-tuned backbone models delivered unsatisfactory re-
sults despite having a large number of trainable parameters,
making them less parameter-efficient. To address this is-
sue, we proposed Parameter-Efficient Crossmodal Learning
(PECL), which involves training only a few additional mod-
ules during fine-tuning. Our experimental results demon-
strated that the proposed method outperformed the fine-
tuning of the original backbone networks (see Section 5.5
in the main paper).

Next, we report the full ablation study on UT-Adapter
positions in Table 7 and kernel size in Table 8. UT-Adapters
in parallel with MHSA and FFN with a kernel size of 3
achieved the best accuracy and overall performance. As
shown in Table 8, the UT-Adapter with a Kernel size of 3
delivered the best results with fewer parameters and a lower
computation budget. For larger kernels, the performance



Figure 2. Multitask Learning accuracies on 25 visual-audio features.

Fusion Method 3-Fold Average Duration Protocol Gender Protocol
ACC F1 AUC ACC F1 AUC ACC F1 AUC

Scaled Dot-Product Attention [8] 60.40 70.83 56.40 59.72 71.14 55.17 55.13 60.37 52.47
Fusion (PAVF) 64.75 71.20 62.71 62.43 70.04 59.92 58.28 65.41 53.31

Table 5. Comparsion of PAVF with Scaled Dot-Product Attention for fusion. The metrics are ACC (%), F1 (%), and AUC(%).

w/o multitask 5A 20V 25(A+V)

ACC (%) 64.75 64.05 64.90 66.84
F1 (%) 71.20 71.61 70.68 73.35

AUC (%) 62.71 61.37 61.44 64.58
Table 6. Results of multi-task learning with different features.

Position q MHSA q FFN q MHSA q FFN MHSA △ FFN

ACC (%) 64.75 63.88 63.37 64.39
F1 (%) 71.20 68.72 71.14 70.44

AUC (%) 62.71 61.89 60.12 61.93

Table 7. Ablation study on UT-Adapter positions. q indicates “in
parallel with” and △ indicates “between”.

Kernel Size 3 5 7 9

ACC (%) 64.75 64.4 64.31 64.14
F1 (%) 71.20 69.91 70.88 71.05

AUC (%) 62.71 62.83 62.22 61.51

Table 8. Ablation study on UT-Adapter kernel size.

Dimension of UT-Adapter 64 128 256

ACC (%) 60.36 64.75 61.29
F1 (%) 70.95 71.20 70.73

AUC (%) 53.83 62.71 55.73
Table 9. Ablation study on UT-Adapter dimensions.

dropped marginally and also at the expense of more param-
eters. We also conducted an ablation study on the embed-
ding dimensions of UT-Adapter shown in Table 9, where
the dimension of 128 achieved the best performance.

No. of PAVF modules 1 2 3 4

ACC (%) 60.66 61.89 63.48 64.75
F1 (%) 70.48 71.90 71.12 71.20

AUC (%) 57.03 57.39 62.22 62.71
Table 10. Ablation on numbers of PAVF modules.

Dimension of PAVF 128 256 512

ACC (%) 62.82 64.75 61.08
F1 (%) 66.32 71.20 69.53

AUC (%) 59.72 62.71 58.33
Table 11. Ablation study on PAVF correlation dimensions.

2.6. Ablation Study on Fusion

Table 5 shows the performance of the proposed PAVF
module and the scaled dot-product attention proposed by
Vaswani et al. [8] on DOLOS. We only replaced the PAVF
module with the scaled dot-product attention. Specifically,
the scaled dot-product attention was conducted on the con-
catenation of visual and audio features from each encoder
layer. PAVF performed better than scaled dot-product at-
tention in terms of accuracy and AUC on all the protocols.

We reported the full results on ablations of the number
of PAVF modules in Table 10. The results demonstrated
that with four PAVF modules, our model achieved the best
performance. Note that the dimension of the UT-Adapter
was 128.

We performed an ablation study on the fusion head in
PAVF. PAVF module without the fusion head resulted in



63.48%, 71.12%, and 62.22% on the accuracy, F1, and
AUC metrics, respectively. In comparison, the PAVF mod-
ule with a fusion head achieved better performance. Learn-
ing the correlation between multiple modalities was one of
the commonly used methods. However, PAVF was effective
because it learned the crossmodal attention in a lower di-
mension space, which reduced the computational cost. The
fusion head fused multimodal features and further reduced
the dimension. PAVF was easy to be applied at any stage
between unimodal learning.

3. Analysis and Discussion
We discuss a few points related to our established dataset

and experiments.
Dataset collection. Deceptive gameshow provides a rich
resource for deceptive samples. However, it is challenging
to collect clean and high-quality data due to cinematogra-
phy (camera viewpoint frequently shifts between the speak-
ers and the host in order to captivate the viewers) and back-
ground effects (audience laughs, funny meme sounds). In
comparison, these problems can be controlled and elimi-
nated in the lab-based setting. However, the incentive for
speakers may not be high. Experiences from establishing
gameshow datasets can be useful for future deception de-
tection dataset construction.
Impact of duration and gender. DOLOS provides a du-
ration protocol and a gender protocol. The lower perfor-
mance in these protocols reveals that duration and gender
factors affect the multimodal deception detection accuracy.
It is crucial to develop multimodal AI models that are ro-
bust to different impact factors like age, gender, ethnicity,
spoken language, etc. We hope that our dataset opens up
new venues for investigating these issues.
Natural language. The proposed method captured visual
and audio cues to perform deception detection. It is chal-
lenging to learn useful text information and fuse multiple
modalities. In the future, we will consider text modalities
for the deception detection task.
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