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Model Method Pruned Top-1 FLOPs ↓
Acc.(diff.)

VGG-16

CPGMI[3] 73.53%(−0.27%) 37%
CPMC[5] 73.01%(−0.79%) 48%
PGMPF[1] 73.45%(−0.35%) 48%

PGMPF-SFP[1] 73.66%(−0.14%) 48%
APIB (ours) 73.89%(+0.09%) 48%

ResNet-56

NSPPR[6] 72.46%(−0.03%) 25%
DLRFC[2] 71.41%(+0.27%) 26%

APIB (ours) 73.31%(+0.79%) 26%
PGMPF[1] 70.21%(−2.71%) 53%

APIB (ours) 70.89%(−1.63%) 53%

Table 1. Pruning results of VGG-16 and ResNet-56 on CIFAR-
100.

1. Overview
In this supplementary material, we provide the experi-

mental results about CIFAR-100 and time cost comparison.

2. Experiments on CIFAR-100
We conduct experiments on CIFAR-100 using ResNet-

56 and VGG-16, the results show that APIB yield a state-
of-the-art performance.

3. Time cost comparison
We compare the time cost of APIB and baselines for

pruning ResNet50 with a sparsity of 76%. APIB sig-
nificantly reduces pruning time compared to Hrank and
CHIP[4], which calculate rank or channel independence
based on feature maps.

*Corresponding author.
†Equal contribution.

Method L1 FPGM APIB Hrank CHIP
Time 7s 8s 63s 9112s 545618s

Table 2. Time cost required by APIB and other baselines.
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