Supplementary Material
Boundary-Aware Divide and Conquer: A Diffusion-based Solution for
Unsupervised Shadow Removal

Langing Guo', Chong Wang!, Wenhan Yang?, Yufei Wang!, Bihan Wen'!*
'Nanyang Technological University, Singapore  2Peng Cheng Laboratory, China
{lanqingOOl , wangl711, yufei001l, bihan. wen}@ntu .edu.sg, yangwh@pcl.ac.cn

In this supplementary material, we include more implementation details of the architecture of the proposed Shadow-
Invariant Intrinsic Decomposition (SIID) model and the shadow simulation process (Section A), more ablation studies to
verify the effects of each loss function employed in SIID (Section B), more cross-dataset evaluations to verify the general-
izability of our proposed method (Section C), as well as more visual comparisons on ISTD [15, 9], and the video shadow
removal [10] datasets (Section D).

A. Implementation Details
A.1. Architecture of SIID

Our proposed Shadow-Invariant Intrinsic Decomposition (SIID) model is built based on one recent transformer-based
image restoration model [ 1 6] to exploit the multi-scale non-local similarity. SIID consists of one encoder D and two decoders
D, and D; for reconstructing reflectance and illumination, respectively. Figure A illustrates the detailed architecture and
Figure B shows the network components of LeWin Block and its corresponding LeFF.

A.2. Details of Shadow Simulation

We select a non-learning based shadow synthetic method [7] without any external dataset, which is built on a physically-
grounded shadow illumination model that can synthesize a shadow image given an arbitrary combination of a shadow-free
image, a shadow mask, and shadow attenuation parameters. Given a shadow-free image y € RHXWX3 e first obtain an
image 297k ¢ REXW X3 where all the pixels are darkened with the same attenuation property, according to the illumination
affine model as follow:
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where ¢ and j indicate indices for row and column location indexes, respectively. £ = 0,1 and 2 indicates the k-th color
channel (red, green, and blue).

The final synthesized shadow image x is corrupted in some regions, can be obtained by composing shadow-free image y
and darkened image 2%"*, by alpha composition using the shadow mask m € R*W as the alpha factor:

Tiji = (1= maj)yije + mijaiy ™ . (B)
Then the attenuation parameters wy, and b can be sampled according to [7] to simulate plausible and diverse shadows.

B. More Ablation Studies

The effects of losses for training SIID. We thoroughly investigate the impact of each loss function applied in the training of
the proposed shadow-invariant intrinsic decomposition (SIID). Table A shows the evaluation results on different combinations
of loss functions. Our complete model achieves the best performance among those invariants.

*Corresponding author: Bihan Wen.
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Figure A: Detailed architecture of the proposed Shadow-Invariant Intrinsic Decomposition (SIID) model, which consists of
one encoder D and two decoders D,. and D; for reconstructing reflectance r and illumination /, respectively.
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Figure B: Detailed architecture of the proposed Shadow-Invariant Intrinsic Decomposition (SIID) model, which consists of
one encoder D and two decoders D,. and D; for reconstructing reflectance and illumination, respectively.

Table A: Ablation study to verify the effectiveness of each loss for training shadow-invariant intrinsic decomposition (SIID)
model over the ISTD dataset.

£ r r P Shadow All
recon cons smo boun | RMSE| PSNRT SSIMf | RMSE, PSNRt SSIMt
@ v 8.1 35.45 0.983 3.6 32.22 0.955
® v v 8.0 3580  0.984 3.6 3233 0.956
® v v v 7.6 3622 0979 35 3260  0.958
) v v v v 7.6 3591  0.986 33 3273 0.962
C. More Evaluations
Cross-dataset evaluation. Supervised learning methods [1 1, 8] learn the pixel-wise mapping between the shadow images

and ground-truth shadow-free ones in a fully-supervised manner, which easily results in overfitting the training dataset with
poor generalization. While certain supervised methods may exhibit strong performance in cases where the training and
testing scenes are highly similar, if there exist substantial disparities between the distributions of the training and testing
sets, performance may suffer significantly. To further explore the generalizability of our method, we conduct a cross-dataset
evaluation on ISTD dataset [ 15, 9].

In detail, we select the recent reproducible supervised learning method, i.e., Fu ef al. [2], and we directly apply the pre-
trained model of supervised methods to the ISTD dataset, where that pre-trained model is trained on the SRD dataset [13]
with different scenes and styles from the ISTD dataset. On the contrary, the unsupervised and classic methods do not require
paired training data, which can be adapted to any testing set. Table B summarizes the quantitative results on the ISTD dataset.
We find an obvious drop for the supervised learning method when the testing distribution is different from the training one.



Method Setting Shadow Region (S) Non-Shadow Region (NS) All Image (ALL)
PSNRT SSIMT RMSE| | PSNRT SSIMT RMSE| | PSNRT SSIMT RMSE]

Yang et al. [17] 21.57 0.878 232 22.25 0.782 14.2 20.26 0.706 15.9
Gong et al. [3] Classic 30.53 0.972 13.0 36.63 0.982 2.6 28.96 0.943 43
Guo et al. [4] 26.89 0.960 20.1 35.48 0.975 3.1 25.51 0.924 6.1
DHAN [1] 32.92 0.988 9.6 27.15 0.971 7.4 25.66 0.956 7.8
SP+M-Net [9] 37.60 0.990 6.3 36.02 0.976 29 32.94 0.962 3.5
Fuetal. [2] Supervised 36.04 0.978 6.7 31.16 0.892 3.8 29.45 0.861 4.2
Fuetal. [2]* 32.67 0.969 12.0 29.99 0.876 4.5 27.14 0.832 5.8
SG-ShadowNet [14] 36.80 0.990 6.5 35.57 0.978 29 32.46 0.962 35
MaskShadow-GAN [6] 32.19 0.984 10.8 33.44 0.974 3.8 28.81 0.946 4.8
LG-ShadowNet [11] 32.44 0.982 9.9 33.68 0.971 34 29.20 0.945 4.4
DC-ShadowNet [8] 31.06 0.976 12.2 27.03 0.961 6.8 25.03 0.926 7.8
Leeral [10] Unsupervised 33.09 0.983 10.4 35.26 0.977 2.9 30.12 0.950 4.0
G2R [12] 33.58 0.979 8.9 35.52 0.976 2.9 30.52 0.944 39
Ours (w/ detected mask) 35.71 0.986 7.6 36.39 0.981 2.7 32.11 0.959 35
Ours (w/ GT mask) 3591 0.986 7.6 37.27 0.984 24 32.73 0.962 33

Table B: Quantitative comparison results of the proposed method with the state-of-the-art methods on ISTD [15, 9] dataset.
The best performances for supervised learning and unsupervised learning methods are highlighted in Bold. * indicates the
pre-trained model is trained using other datasets instead of ISTD, e.g., SRD dataset.

D. More Visual Examples

Figure C, Figure D, and Figure E illustrate some visual results on ISTD [15, 9]. Our method can effectively suppress
the boundary artifacts and achieve better visual results, especially compared to those unsupervised methods. Besides, to
verify the effectiveness of our method on video shadow removal, we also provide some visual examples on the video shadow
dataset [10] as shown in Figure F. For some extremely dark cases, our method can restore clearer structures compared to the
competing methods as shown in Figure F.
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Figure C: One example of shadow removal results on the ISTD [15, 9] dataset. The input shadow image, the estimated
results of classic methods: Guo et al.[4]; supervised learning methods: SP+M-Net [9], DHAN [1], Fu et al. [2], DSC [5],
SG-ShadowNet [ 14]; unsupervised learning methods: Le e al.[10], DC-ShadowNet [8], G2R [12], Our proposed method;
and the ground truth, respectively. Please zoom in to see the details.
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Figure D: One example of shadow removal results on the ISTD [15, 9] dataset. The input shadow image, the estimated
results of classic methods: Guo et al.[4]; supervised learning methods: SP+M-Net [9], DHAN [1], Fu et al. [2], DSC [5],
SG-ShadowNet [ 14]; unsupervised learning methods: Le e al.[10], DC-ShadowNet [8], G2R [12], Our proposed method;
and the ground truth, respectively. Please zoom in to see the details.
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Figure E: Two examples of shadow removal results on the ISTD [15, 9] dataset. The input shadow image, the estimated
results of classic methods: Guo et al. [4], Gong et al. [3]; unsupervised learning methods: Le et al. [9], DC-ShadowNet [&],
G2R [12], our proposed method; and the ground truth, respectively. Please zoom in to see the details.
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Figure F: Two examples of shadow removal results on the video shadow removal dataset [10]. The input shadow image, the
estimated results of unsupervised learning methods: Mask-ShadowGAN [6], G2R [12], and our proposed method, respec-
tively. Please zoom in to see the details.
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