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1. Theoretical proof of the feature purity
In this section, we present the theoretical analysis that

higher feature purity (i.e., contains more task-relevant infor-
mation) will help the generalization.

For the entire forgery detection task, we let p(x, y) rep-
resent the ground-truth joint probability distribution corre-
sponding to data x and label y. x ∈ X and y ∈ Y . Ideally,
we want to get a model f(x; θ) : {X ; Θ} → Y , θ ∈ Θ,
which minimizes the following objective function during the
training process [4]:

min
f

F (f) =

∫
L(f(x; θ), y)dp(x, y) (1)

where L is the loss function in the training.
However, in the actual training process, we cannot know

the ground-truth probability distribution p(x, y), but usually
use a training set Dtrain that we can obtain, and approximate
Eq. (1) through average calculation. Let I denote the number
of data, the actual training target of the corresponding model
f1(x; θ1) is:

min
f1

Factual (f1) =
1

I

I∑
i=1

L (f1 (xi; θ1) , yi)

s.t. (xi, yi) ∈ Dtrain

(2)

Comparing Eq. (1) and Eq. (2), the model f1 obtained is
not close to the ideal f well due to the deviation of Dtrain

to p(x, y) and the average approximation. When Dtrain

and p(x, y) are biased, model f1 may satisfy the goal of
Eq. (2) by learning some “shortcut features” [2] which
exist in the bias part and are not relevant to the forgery
detection task. Therefore, when faced with unseen domain
data outside Dtrain, f1 does not apply well, resulting in
weak generalization. On the contrary, if we make the features
of f1 have as few forgery-irrelevant features as possible from
the bias part (i.e., the feature purity is as high as possible),
then f1 will be more approximate to f , thus achieving better
generalization.
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2. Solving details for Eq. (2)
In this section, we show the details of solving Eq. (2) of

the paper under the constraints of Eq. (1).
As we mentioned in the paper, gr represents the guide

embedding of the real domain obtained by random initial-

ization, and
{
gfi

}N

i=1
is the guide embedding of forgery

domains that needs to be solved. We first use δ
(
gfi

)
to

represent the constraints in Eq. (1) of the original paper:

δ
(
gfi

)
= e

gT
r g

fi − ecos(θ0) = 0 (i = 1, · · · , N) (3)

Then we aim to minimize Eq. (2) of the original paper,
subject to the constraints of δ

(
gfi

)
, which is formulated as:

min L

({
gfi

}N

i=1

)
=

1

N

N∑
i=1

log

N∑
j=1

e
gT

fi
g
fj

/τ

s.t. δ
(
gfi

)
= 0 (i = 1, · · · , N)

(4)

We solve this based on the Lagrangian multiplier method
[1]. Let ωi denote the Lagrangian multiplier, then the new
solution function H(·) can be constructed as:

H
({

gfi

}N

i=1

)
= L

({
gfi

}N

i=1

)
+

N∑
i=1

ωi · δ
(
gfi

)
(5)

By calculating the partial derivatives of H to gfi
and ωi and

setting them to 0,
{
gfi

}N

i=1
can be obtained:

∇g
fi
H =

∂H
∂gfi

= ∇L+ ωi∇δ = 0 (6)

∇ωi
H =

∂H
∂ωi

= δ
(
gfi

)
= 0 (7)

3. More details on hyper-parameters
k in A-DBM: k is |Ki| in Eq. (5) of the paper. When k=10,
30, 50, 55, 60, 80, and 100, the AUCs on CelebDF are 79.35,



Train Set DF F2F NT DF F2F FS

Test Set FS (HQ) FS (LQ) NT (HQ) NT (LQ)

Acc AUC Acc AUC Acc AUC Acc AUC

Lce−2 76.61 85.89 91.82 96.99 79.02 87.28 81.93 90.28
Lce−(1+N) 77.65 85.16 91.85 97.07 81.26 88.14 82.63 90.76
Lguide 78.44 86.95 92.33 97.34 82.07 89.13 83.95 92.04

Table 1. Comparisons of methods that increase the discrimination of different domains, including the results of FS and NT as the test set
under the cross-test setting within FF++.

Train Set DF F2F NT DF F2F FS

Test Set FS (HQ) FS (LQ) NT (HQ) NT (LQ)

Acc AUC Acc AUC Acc AUC Acc AUC

w/o Lguide 79.92 88.26 95.05 98.17 82.91 91.49 86.32 94.46
w/o Lpull&Lpush 82.51 90.54 96.93 99.25 84.79 92.17 87.42 95.03
w/o Lpull 83.48 92.69 97.05 99.31 86.94 93.86 88.56 95.91
w/o Lpush 84.35 93.07 97.24 99.40 87.30 94.83 88.67 96.14
w/o A-DBM 80.14 88.79 95.67 98.21 85.73 93.21 87.49 94.75

ours 86.32 94.11 97.90 99.68 88.04 96.15 89.95 97.12

Table 2. Ablation performance after removing each module of the method, including the results of FS and NT as the test set under the
cross-test setting within FF++.

80.65, 83.02, 84.97, 84.91, 84.89, and 84.95. Stability is
reached when k=55. When k=200, AUC drops to 81.96. In
our training, each forgery domain has about 20,000 data,
and the range of 55/20000=0.275% can be regarded as the
nearest neighbor.
The number of clusters: In the decoupling module, we use
clustering based on self-supervised features to explore poten-
tial similarities between data. When the number of clusters
is 100, 300, 500, 700, and 1000, the AUCs on CelebDF are
79.96, 81.78, 84.97, 83.65, and 83.42. When the number is
small, it is easy to group less similar data into one cluster,
and separating these data does not serve the purpose of de-
coupling irrelevant similarities well. When the number is
large, it will cause similar data to be divided into different
clusters, and when we conduct pushing operation, these data
are not covered, so the performance will be reduced. When
the number is 500, optimal performance is achieved.

4. Computational cost

For FLOPS, A-DBM calculates the nearest neighbor ma-
trix, and this increase is 0.104% of EN-B4 FLOPS, so the
time consumption will not increase significantly. For mem-
ory consumption, the decoupling model needs to store a
feature set V , and this increase is only 10M. Our method
focuses on the loss functions, so model parameters are not
changed.

5. Additional experiments
In this section, we show more results of our method on

cross-test setting within FF++ to demonstrate the effective-
ness of our method in multiple experimental settings. In the
first two parts of this section, we show the ablation results of
using FS and NT as the test set. In the third part, we show
the comparison with other recent methods.

5.1. Methods to distinguish forgery domains

For methods of enhancing the forgery domain discrimi-
nation, we regard results based on the binary cross-entropy
loss Lce−2 as the baseline. Based on this, we compare the
multi-classification cross-entropy loss Lce−(1+N) that can
also distinguish multiple forgery domains. The performance
comparisons of Lce−2, Lce−(1+N), and our Lguide with FS
and NT as the test set are shown in Table 1.

Similar to the results on DF and F2F, on FS and NT, our
Lguide achieves the best performance among the three losses.
For example, on the NT dataset, the AUCs on HQ and LQ
are 1.85% and 1.76% higher than Lce−2, and 0.99% and
1.28% higher than Lce−(1+N), respectively. For Lce−(1+N),
it outperforms Lce−2 in most cases, but on FS (HQ), its
AUC is 0.73% lower than Lce−2. This shows that it is not
feasible to simply regard distinguishing different domains
as an ordinary multi-classification task. To improve gener-
alization, we need to keep the real domain far enough away
from forgery domains to cope with the complexity of the
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Figure 1. The heatmap comparisons of binary cross-entropy (CE-2) and our method. Forgery artifacts are marked in red frames.

forgery domain, while also ensuring the distinction between
the forgery domains. That is, the separation degree between
real and forgery should be much larger than the degree be-
tween forgery and forgery. Our guide-space based method
does this well and thus achieves good performance.

5.2. Importance of different modules

Table 2 lists the performance of our method on FS and
NT as the test set when each key module of our method is
removed respectively. It can be seen that each module con-
tributes to the overall performance, and its removal will lead
to a decrease in performance. Both Lguide and Lpull&Lpush

can achieve the separation of different domains and the ag-
gregation of the same domain, but removing Lguide has
a greater impact. This is because guide embeddings can
achieve the controllability of separation and aggregation,
and the decoupling model enhances this discriminativeness
by reduce the interference of irrelevant similarities between
domains. For the A-DBM module, it has different influences
on different datasets. For example, on FS (HQ), removing
it will reduce AUC by 5.32%, and on NT (LQ), AUC will
decrease by 2.37%. Overall, A-DBM focuses on weak sam-
ples in the optimization process and plays an important role
in the overall performance.

5.3. Cross test on FF++

In cross-test setting within FF++, we compare the per-
formance of our method and the recent methods. In Table
3, we compare the results of DCL [6], Face X-ray [3], and
Xception[5]. It can be seen that under DF, F2F, FS, and NT,
our method achieves optimal performance. Under NT, DCL
[6] achieves the sub-optimal performance, and ours is 2.3%
higher than it.

6. More visualizations
In this section, we show more heatmaps of binary cross-

entropy (CE-2) and our method, and these visualizations are

Training Set Train on remaining three

Testing Set DF F2F FS NT
Xception [5] 93.9 86.8 51.2 79.7
Face X-ray [3] 99.5 94.5 93.2 92.5
DCL [6] 95.7 98.2 91.5 93.9
Ours 99.8 98.9 94.1 96.2

Table 3. Cross-test within FF++ (HQ). Generalization performance
AUC (%) when testing on one type after training on the remaining
three types.

shown in Figure 1.
Similar to the results shown in Figure 6 of the paper,

for CE-2, there are certain similarities in the areas that the
models focus on under different forgery types, and they
are concentrated in the central area of the face. While the
areas that our method focuses on are the respective artifacts
corresponding to different forgery types. For face-swapping
methods (DeepFakes and FaceSwap) that replace the whole
face, it is reasonable for the model to focus on either the
central area of the face or the boundary artifacts. For the face
reenactment methods (Face2Face and NeuralTextures), the
forgery traces are mainly in local areas such as the mouth
and eyes. But due to the interference of forgery-irrelevant
similarities between different forgery methods, CE-2 still
focus on the central area of the face similar to the face-
swapping methods, and does not extract the distinguishable
features of F2F and NT well. In contrast, our method can
pay attention to the corresponding forgery traces and extract
better forgery-related features.
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