
A. Theoretical Proof of Theorem 1
A.1. Notations

Given K source domains Ds = {D1
s , D

2
s , ..., D

K
s }, we

indicate that each domain Dk
s contains nk input and labels

{(xk
i , y

k
i )}

nk
i=1, where x ∈ X and y ∈ Y . The target domain

is denoted as Dt. Given a hypothesis h : X → Y , where
h is from the space of the candidate hypothesis H. The
expected risk of h on a domain D is defined as: R[h] =
Ex∼Dℓ[h(x), f(x)], where ℓh,f : x → ℓ[h(x), f(x)] is
a convex loss-function defined for ∀h, f ∈ H and as-
sumed to obey the triangle inequality. Under the DG set,
y = f(x) represents the input label. We also denote
the feature extractor of the network as ϕ(·) : X → Rn,
which maps the input images into the n-dimentional fea-
ture space. Following [1, 4, 26, 25], for the source domains
Ds = {D1

s , D
2
s , ..., D

K
s }, we define the convex hull Λs as

a set of mixture of source domain distributions: Λs = {D̄ :

D̄(·) =
∑K

i=1 πiD
i
s(·), πi ∈ ∆K}, where π is non-negative

coefficient in the K-dimensional simplex ∆K . We define
D̄t ∈ Λs as the closest domain to the target domain Dt.

A.2. Definitions and Lemmas

Definition 1 [16]. Let F = {f ∈ Hk : ||f ||Hk
≤ 1} be

a function class, where Hk be a RKHS with its associated
kernel k. Given two different distributions of Ds and Dt,
the maximum mean discrepancy (MMD) distance is:

dMMD(Ds, Dt) = ||
∫
x

k(x, ·)d(ϕ(Ds)− ϕ(Dt))||Hk
.

(1)
Based on the MMD distance, we now introduce learning

bounds for the target error where the divergence between
distributions is measured by the MMD distance. We first
introduce a lemma that indicates how the target error can
be bounded by the empirical estimate of the MMD distance
between an arbitrary pair of source and target domains.
Lemma 1 [16]. Let F = {f ∈ Hk : ||f ||Hk

≤ 1} denote
a function class, where Hk be a RKHS with its associated
kernel k. Let ℓh,f : x → ℓ[h(x), f(x)] be a convex loss-
function with a parameter form |h(x)−f(x)|q for some q >
0, and defined ∀h, f ∈ F , ℓ obeys the triangle inequality.
Let S and T be two samples of size m drawn i.i.d from Ds

and Dt, respectively. Then, with probability of at least 1−δ
(δ ∈ (0, 1)) for all h ∈ F , the following holds:

Rt[h] ≤Rs[h] + dMMD(Dt, Ds) +
2

m
(Ex∼Ds

[
√
tr(KDs

)]

+ Ex∼Dt
[
√
tr(KDt

)]) + 2
log( 2σ )

2m
+ ϵ,

(2)
where KDs and KDt are kernel functions computed on

samples from Ds and Dt, respectively. ϵ is the combined
error of the ideal hypothesis h∗ on Ds and Dt.

Then, to investigate the effect of channel robustness to
domain shifts on the generalization error bound, we define
the channel-level maximum mean discrepancy (CMMD)
distance to estimate the channel-level distribution gap be-
tween different domains, which is formulated as:
Definition 2. Let n denote the number of channels in the ex-
tracted features of ϕ(·). Given two different distribution of
Ds and Dt, the channel-level maximum mean discrepancy
(CMMD) between ϕ(Ds) and ϕ(Dt) is defined as:

dCMMD(Ds, Dt) =
1

n

n∑
i=1

sup
ϕi∈Φi

||
∫
x

k(x, ·)d(ϕi(Ds)

− ϕi(Dt))||Hk
,

(3)

where Φ is the space of candidate hypothesis for each chan-
nel, ϕi(D) is the distribution of the i-th channel for the do-
main D, and Hk is a RKHS with its associated kernel k.

The CMMD distance could be regarded as a channel-
level version of the MMD distance, which represents the
maximum value of the difference in channel activation for a
given two domains in the model, thus reflecting the channel
robustness to domain shifts. Based on the CMMD distance
and Lemma 1, we derive a generalization error boundary of
the model in the multi-source domain scenario (i.e., Theo-
rem 1), and provide the detailed proof below.

A.3. Proof

Theorem 1 (Generalization risk bound). With the previ-
ous settings and assumptions, let Si and T be two samples
of size m drawn i.i.d from Di

s and Dt, respectively. Then,
with the probability of at least 1 − δ (δ ∈ (0, 1)) for all
h ∈ F , the following inequality holds for the risk Rt[h]:

Rt[h] ≤
N∑
i=1

πiRi
s[h] + dCMMD(D̄t, Dt)

+ sup
i,j∈[K]

dCMMD(D
i
s, D

j
s) + λ+ ϵ,

(4)

where λ = 2

√
log( 2

σ )

2m + 2
m (

∑N
i=1 πiEx∼Di

s
[
√

tr(KDi
s
)]+

Ex∼Dt
[
√
tr(KDt

)]), KDi
s

and KDt
are kernel functions

computed on samples from Di
s and Dt, respectively. ϵ is the

combined error of ideal hypothesis h∗ on Dt and D̄t.
Proof. Consider the closest domain D̄t to target domain
Dt as a mixture distribution of K source domains where
the mixture weight is given by π, i.e., D̄t =

∑K
i=1 πiD

i
s(·)

with
∑K

i=1 πi = 1. For a pair of source domain Di
s and the

target domain Dt, the following inequality holds:

dCMMD(Dt, D
i
s) ≤ dCMMD(Dt, D̄t) + dCMMD(D̄t, D

i
s).

(5)
According to Definition 2, we could derive the weighted
sum of the CMMD distance between source domains and



the target domain, which is formulated as:

N∑
i=1

πidCMMD(Dt, D
i
s)

≤ dCMMD(Dt, D̄t) +

N∑
i=1

πidCMMD(D̄t, D
i
s)

≤ dCMMD(Dt, D̄t) + sup
i,j∈H

dCMMD(D
i
s, D

j
s).

(6)

Moreover, we also investigate the relationship between the
MMD and CMMD distances based on Definitions 1 and 2:

dMMD(D
i
s, Dt) = ||

∫
x

k(x, ·)d(ϕ(Di
s)− ϕ(Dt))||Hk

= ||
∫
x

k(x, ·)d( 1
n

n∑
i=1

(ϕi(D
i
s)− ϕi(Dt)))||Hk

≤ ||
∫
x

k(x, ·)
n∑

i=1

sup
ϕi∈Φi

d(ϕi(D
i
s)− ϕi(Dt))||Hk

= dCMMD(D
i
s, Dt).

(7)
Based on the above preparations, we now derive the gen-

eralization error bound of the model on the unseen target do-
main. Recalling that Lemma 1 indicates the generalization
error bound between two different distributions. Consider-
ing the pair of the i-th source domain and the target domain,
the following holds with the probability of at least 1− δ:

Rt[h] ≤Ri
s[h] + dCMMD(Dt, D

i
s) +

2

m
(Ex∼Di

s
[
√
tr(KDi

s
)]

+ Ex∼Dt
[
√
tr(KDt

)]) + 2
log( 2σ )

2m
+ ϵ.

(8)
We then generalize the above inequality to the multi-source
scenario, where the ideal target domain could be expressed
as a weighted combination of different source domains. We
weight the generalization error of each source-target pair
with π where

∑K
i=1 πi = 1 and calculate their sum:

Rt[h] ≤
N∑
i=1

πiRi
s[h] +

N∑
i=1

πidCMMD(Dt, D
i
s)

+
2

m
(

N∑
i=1

πiEx∼Di
s
[
√
tr(KDi

s
)]

+ Ex∼Dt [
√
tr(KDt)]) + 2

log( 2σ )

2m
+ ϵ.

(9)

By replacing the CMMD distance in Eq. (9) with the re-
tracted CMMD distance in Eq. (6), we arrive at Theorem 1.

B. Additional Experiments
We conduct additional experiments to verify the effec-

tiveness of our DomainDrop, including: 1) The effects of

Table 1. Effect (%) on different inserted posotions of Domain-
Drop. B1 − 4 represent four residual blocks of the ResNet ar-
chitecture. The experiment is conducted on PACS dataset with
ResNet-18 backbone. The best performance is marked as bold.

Position PACS
B1 B2 B3 B4 Art Cartoon Photo Sketch Avg.
- - - - 80.31± 1.54 76.65± 0.48 95.38± 0.12 71.67± 1.49 81.00
✓ - - - 81.10± 0.76 78.88± 0.69 94.72± 0.45 81.92± 0.69 84.15
- ✓ - - 80.71± 0.71 79.25± 0.44 94.85± 0.35 82.16± 1.35 84.24
- - ✓ - 82.52± 0.72 79.44± 0.46 95.76± 0.16 79.35± 1.17 84.27
- - - ✓ 81.15± 0.98 78.58± 0.81 95.39± 0.40 79.74± 1.47 83.72
✓ ✓ - - 81.15± 1.03 79.44± 0.30 95.99± 0.49 83.13± 0.48 84.93
✓ ✓ ✓ - 83.84± 0.70 80.02± 0.37 96.29± 0.23 83.23± 0.53 85.87
✓ ✓ ✓ ✓ 84.47± 0.77 80.50± 0.56 96.83± 0.21 84.83± 0.67 86.66

Table 2. Performance (%) comparisons with the start-of-the-art
DG approaches on the DomainBed benchmark. We compare with
12 DG algorithms on the following five multi-domain datasets:
VLCS [20], PACS [12], OfficeHome [21], TerraInc [2], and Do-
mainNet [15]. The network architecture is ResNet-50. We use the
validation set from source domains for the model selection.

Method Venue VLCS PACS OfficeHome TerraInc DomainNet Avg.
ERM [6] ICLR’20 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
RSC [8] ECCV’20 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
SagNet [14] CVPR’21 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
SelfReg [9] ICCV’21 77.5 ± 0.0 86.5 ± 0.3 69.4 ± 0.2 51.0 ± 0.4 44.6 ± 0.1 65.8
FISH [19] ICLR’21 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 63.9
W2D [7] CVPR’22 - 83.4 ± 0.3 63.5 ± 0.1 44.5 ± 0.5 - -
XDED [10] ECCV’22 74.8 ±0.0 83.8 ± 0.0 65.0 ± 0.0 42.5 ± 0.0 - -
GVRT [13] ECCV’22 79.0 ± 0.2 85.1 ± 0.3 70.1 ± 0.1 48.0 ± 0.2 44.1 ± 0.1 65.2
MIRO [3] ECCV’22 79.0 ± 0.0 85.4 ± 0.4 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9
PTE [13] ECCV’22 79.0 ± 0.2 85.1 ± 0.3 70.1 ± 0.1 48.0 ± 0.2 44.1 ± 0.1 65.2
EQRM [5] NeurIPS’22 77.8 ± 0.6 86.5 ± 0.2 67.5 ± 0.1 47.8 ± 0.6 41.0 ± 0.3 64.1
DAC-SC [11] CVPR’23 78.7 ± 0.3 87.5 ± 0.1 70.3 ± 0.2 44.9 ± 0.1 46.5 ± 0.3 65.6
DomainDrop Ours 79.8 ± 0.3 87.9 ± 0.3 68.7 ± 0.1 51.5 ± 0.4 44.4 ± 0.5 66.5

different inserted positions of DomainDrop in the network;
2) The experiments on the DomainBed benchmark.

Different inserted positions of DomainDrop. We here
investigate where to insert DomainDrop in the network.
Given a standard ResNet with four residual blocks, we train
different models by taking different blocks as candidates
and randomly selecting a block to activate DomainDrop at
each iteration. The results are reported in Tab. 1. The first
line represents the results of the baseline model, which is
trained using all source domains directly on the ResNet-18
(i.e., DeepAll [27]). We observe that no matter where Do-
mainDrop is inserted, the model consistently outperforms
the baseline model by a significant margin, e.g., 3.15%
(84.15% vs. 81.00%) with DomainDrop in Block 1. The
results indicate that our DomainDrop is effective in enhanc-
ing the robustness of channels to domain shifts at differ-
ent network layers. Furthermore, we find that inserting Do-
mainDrop into all blocks of the network leads to the high-
est performance, exceeding the baseline model by 5.66%
(86.66% vs. 81.00%), indicating that suppressing domain-
sensitive channels in all training stages will result in the best
generalization ability. Based on the analysis, we insert Do-
mainDrop into all network blocks in our all experiments.

Experiments on DomainBed. We conducted experi-
ments on the DomainBed benchmark [6], including VLCS,
PACS, OfficeHome, TerraInc, and DomainNet. The net-



work is trained using Adam optimizer for 5000 iterations
with a learning rate of 5e− 5 and batch size of 64. The ex-
periments are repeated three times, and the averaged accu-
racy is reported in Tab. 2. We observe that our DomainDrop
can consistently achieve better performance than ERM (a
strong baseline in DomainBed) on all datasets, e.g., outper-
forming ERM by 2.4% (87.9% vs. 85.5%) on PACS and
5.4% (51.5% vs. 46.1%) on TerraInc. The experimental re-
sults demonstrate the effectiveness of our method on various
DG benchmark datasets. Moreover, DomainDrop obtained
the highest average accuracy among all the compared meth-
ods, exceeding the SOTA method DAC-SC [11] by 0.9%
(66.5% vs. 65.6%), indicating that our method can signifi-
cantly improve the model generalization ability.

C. Analytical Experiments

We conduct experiments to analyze the effectiveness of
our method, including: 1) We discuss why tackle the DG is-
sue on feature channels; 2) We quantify the channel robust-
ness to domain shifts in each network layer; 3) We measure
the domain gap of feature maps extracted by the model; 4)
We provide visual explanations of our DomainDrop.

Why tackle DG on feature channels. Different from
traditional DG methods that constrain the entire network,
recent methods have focused on learning domain-invariant
features in middle layers via domain augmentations [23, 28]
or local penalizations [18, 22]. However, recent work [4]
has indicated that these methods typically perturb or penal-
ize specific pre-defined features, e.g., style statistics [28]
or local textures [18], which could neglect other domain-
specific features and affect model generalization. In this
paper, we propose to analyze the DG issue from a novel
perspective of channel robustness to domain shifts. Our key
insight is that if a channel captures domain-invariant pat-
terns, its activations should remain stable across different
domains. As shown in Fig. 1, we observe that numerous
channels exhibit limited robustness to domain shifts (i.e.,
the red bars). The findings motivate us to focus on enhanc-
ing channel robustness to domain shifts.

Channel robustness to domain shifts. To enhance the
generalization ability of the models to the unseen target do-
main, we wish the model to learn general and comprehen-
sive domain-invariant features from source domains. Ide-
ally, we hope each channel of the representations is acti-
vated by category-related information while being invariant
across domains, making the whole representation sufficient
for classification. Inspired by previous work [23], we ex-
ploit the averaged activation for each class in each domain
to estimate the robustness of each channel to domain shifts.
Specifically, for the i-th channel in the l-th middle layer, we
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Figure 1. The activation value of the channels 1 − 32 in the last
block of ResNet-18 across different domains. The experiment is
conducted on the PACS dataset with Art as the target domain.

Table 3. The standard deviation of channel activations for samples
from different domains. Block. 1−4 represent four residual blocks
of the ResNet architecture. The lower the standard deviation, the
more robust the channel is to domain shifts.

Sensitivity Block. 1 Block. 2 Block. 3 Block. 4
Baseline 4.43 2.06 1.54 7.84
RSC [8] 4.22 1.94 1.63 7.23
I2-Drop [18] 4.03 1.89 1.58 7.42
MixStyle [28] 4.30 2.03 1.51 7.16
FACT [24] 4.83 2.07 1.57 7.52
DomainDrop (Ours) 3.85 1.56 1.04 5.94

first calculate its averaged activation in the k-the domain:

ali =
1

nk

nk∑
j=1

GAP (Fl(xj))i, (10)

where Fl(·) is the feature maps in the l-th middle layer and
GAP (·) denotes the global average pooling layer. Then we
compute the standard deviation of the i-th channel activa-
tion among different domains. We present the results in
Tab. 3. We observe that compared with Baseline, RSC [8]
and I2-Drop [18] present lower channel sensitivity to do-
main shifts in the last layer (i.e., Block. 4) since they can
regularize the model to learning domain-invariant features.
However, since these methods are only suitable for specific
layers (i.e., RSC for the deepest layer and I2-Drop for the
shallowest layer), they cannot adequately counter the over-
fitting issue. The SOTA DG methods MixStyle [28] can in-
crease the feature diversity at multiple layers, but it does not
explicitly remove domain-specific features, thus failing to
reduce channel sensitivity adequately. In contrast, the low-
est standard deviation that DomainDrop achieves indicates
that our method can learn more domain-invariant represen-
tations, showing the superiority of our framework.

Domain gap of extracted features maps. To investigate
the influence of our framework, we also calculate the inter-
domain distance (across all source domains) of the feature
maps extracted by the model on various datasets, includ-



Table 4. The inter-domain distribution gap (×100) of the extracted
features by our method. For PACS, we take Art Painting as the
target domain and the others as all source domains. For Office-
Home, the target domain is Real-World and the others are source
domains. For VLCS, we adopt Sun as the target domain and the
others as source domains. The smaller the inter-domain distance,
the better the generalization performance of the model.

Method PACS OfficeHome VLCS
Baseline 17.57 11.56 16.65
DomainDrop (Ours) 11.82 8.58 14.21

dog giraffe“Photo”

giraffe dog“Cartoon”

dog horse“Sketch”

giraffe elephant“Photo”

Baseline OursFilteredBaseline OursFiltered

Figure 2. Visualization of attention maps of the last convolutional
layer on PACS with Art Painting as the target domain. The back-
bone used in the experiment is ResNet-18. For each sample, the
first column is the category attention map of baseline, the middle
column is the domain attention map generated by domain discrim-
inator, and the last column is the attention map of DomainDrop.

ing PACS, OfficeHome, and VLCS. Following previous DG
method [23], we calcute the inter-domain gap as:

d =
2

K(K − 1)

K∑
k1=1

K∑
k2=k1+1

||F k1
− F k2

||2, (11)

where K is the number of source domains, F k1 and F k2

denote the averaged feature maps of all samples from the
k1-th and k2-th domain, respectively. As shown in Tab. 4,
we can observe that compared to the baseline, DomainDrop
can effectively narrow the inter-domain gap among source
domains on all datasets, indicating that our method can sup-
press domain-specific features and encourage the model to
learn domain-invariant features during training.

Visual explanations. To provide visual evidence of the
effectiveness of DomainDrop in reducing domain-specific
features, we utilized GradCAM [17] to generate attention
maps of the last conventional layer for both the baseline
(DeepAll) and DomainDrop models. The results are pre-
sented in Fig. 2. As we can see, the baseline model captures
a considerable amount of domain-specific information, as
indicated by the overlap between the category attention map
(column 1) and the domain attention map (column 2). On
the other hand, DomainDrop can discard domain-specific
features while retaining domain-invariant features, leading
to more generalized attention maps that focus on represen-
tative information for object classification (column 3). For

instance, in the case of the dog image, the model needs to
focus on the dog’s face as one of the representative fea-
tures to classify, which is precisely captured by Domain-
Drop. In contrast, the baseline focuses on spot texture fea-
tures, which results in misclassification. These results sug-
gest that DomainDrop can effectively reduce the sensitivity
of the model to domain shifts and learn more generalized
features, making it a promising method for DG tasks.
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