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1. Additional Dataset Information
Under the federated-by-dataset scenario, each client con-

structs its own dataset for local training. Five datasets with
significant variances in skeleton video amounts and cate-
gory numbers are selected in Table 1. These variances be-
tween clients lead to huge domain gaps among each other
and simulate the imbalance of data across clients to mimic
the statistical heterogeneity in the real-world scenario.

Table 1. The scales of the datasets used in the federated-by-dataset
scenario. Each client is trained on an individual dataset.

Clients Train. Test. Classes.

PKU MMD I [7] 18, 835 2, 704 51
PKU MMD II [7] 5, 294 1, 610 41
NTU RGB+D 60 [9] 40, 091 16, 487 60
NTU RGB+D 120 [8] 63, 026 50, 919 120
UESTC [5] 11, 361 14, 240 40

2. Overall Optimization Algorithm
The optimization strategy algorithm of FSAR is demon-

strated in Algorithm 1, where the client-server collabo-
rative learning is iteratively performed to achieve a glob-
ally generalized server model. Specifically, in each round
r ∈ {0, 1, ..., R}, the central server qualifies the server up-
date direction as:

∆r = −(Wr
g −Wr−1

g ), (1)

whereWr
g andWr−1

g are the parameters of central server in
current round r and the previous round r − 1, respectively.
The accelerated global model is defined as:

Wr
g =Wr

g − ξ∆, (2)

which is broadcast to each client as parameters re-
initialization for local training in the next round. ∆r keeps

past global gradient information and serves as taking looka-
head parameters during the client-server communication.
Each local client model is optimized with its own data fol-
lowing Wr

i,k = argminWr
i,k
LAll. The central server then

aggregates the local model parameters as follows:

Wr+1
g =

∑
Wr

i + (1− τ)(Wr
g − ξ∆r). (3)

The above is the manner the server updates. Here, hy-
perparameters are set as ξ = 0.8, and τ = 0.8 in our exper-
iments as default.

3. Additional Ablation Studies

We analyze the effect of different implementation de-
tail settings in the federated learning paradigms under the
federated-by-dataset scenario, like the loss weights for local
training of each client, the number of local training epochs,
the number of selected clients in each client-server commu-
nication round.

Loss Weights. The default loss weights in Sec 3.5 are
set as λ1 = λ2 = 1 and λ3 = 0.1 to make our FSAR more
general, even though other values can bring more gains.
Table 2 presents the test accuracy with different parameter
value combinations of the loss weights. Overall, the FSAR
architecture is not sensitive to these parameters.

Selected clients. In each communication round, the
server will randomly select S clients to aggregate the local
model parameters for the global model. The default setting
is S = 5, which means the central server aggregates the
model parameters of all five participating clients. Table 3
compares FSAR with different settings of Selected Clients
S. We can see that updating with an arbitrary client (S = 1)
in each round is superior for small-scale datasets (e.g. PKU
MMD I), while inferior for large-scale datasets (e.g. NTU
RGB+D 120). That is because the collaboration of multiple



Algorithm 1: FSAR

1 Central Server Executing:
2 InitW0

g , init ξ, init ∆0 ← 0;
3 for each round r ← 0 to R do
4 Sr ← (Random selection of clients);
5 Wr

g ←Wr
g − ξ∆r;

6 for client i ∈ Sr in parallel do
7 Wr

i,K ← Local Client Training (Wr
g , r);

8 end
9 Wr+1

g ←
∑

m∈Sr

nm

n W
r
i +(1−τ)(Wr

g−ξ∆r);
10 ∆r+1 ← −(Wr+1

g −Wr
g );

11 end
12 Local Client Training (Wr

g , r) :
13 for local epoch k ← 0 to K do
14 Wr

i,k ←Wr
g ;

15 for data batch b ∈ B do
16 LCE ← CE(Φi(h), y)+

17
∑m̄

m=1 CE(Φi(h̄m), y);

18 LKD ←
∑m̄

m=1 KL(Φi(h̄m),Φi(h));

19 LReg ← 1
2 ||W

r
i,k −Wr

g ||2;
20 LAll ← λ1LCE + λ2LKD + λ3LReg;
21 Wr

i,k ← argminWr
i,k
LAll;

22 end
23 end
24 ReturnWr

i,K

clients makes large-scale clients contribute more knowledge
to the central server.

Local epochs. The number of local epochs in FSAR
represents the trade-off between communication cost and
performance. Fig. 3 compares the test accuracy of local
epochs K = 1, K = 2, and K = 3 with a total of 300
training rounds, where the larger K potentially promotes
the communication efficiency and reduces the communica-
tion cost. The results demonstrate that the performance of
FSAR gradually decreases when K increases, which is even
more noticeable in the small-scale dataset (e.g. PKU MMD
I). This is caused by the accumulation of bias in each local
client, which further indicates the trade-off between perfor-
mance and communication cost in FSAR.

Parameters Sensitivity. Table 4 shows the model sensi-
tivity of our FSAR to the hyperparameters τ and ξ. Parame-
ter ξ controls the acceleration toward momentum of the cen-
tral server model and local client models, and parameter τ is
the server learning rate. Both parameters control the impact
degree of the previous global updates of the central model
on the current client-server transmission. Table 4 illustrates
that the larger τ or ξ is not friendly to small-scale datasets
(e.g. PKU MMD I and PKU MMD II), since it imposes os-
cillation for the global optimization procedure. τ = 0.8

(a) NTU 60 (b) PKU I

Figure 1. Illustration of the different effects of IM and UM. IM is
shared across clients to improve the stability of FL training. UM
is client-specific to prevent current clients from being affected by
other clients with different dataset scales.

and ξ = 0.6 are thus set as default to balance the accuracy
across clients.

KD Loss. For the proposed MKD, the knowledge dis-
tillation is jointly trained with the classification. To im-
pose better supervision on the model, we remove the Cross-
Entropy loss, which may cause interference with KD loss,
and optimize the model by only the KD loss. The results in
Table 5 reflect the interference is minor.

Results for Cross-View settings. We also evaluate the
performance of FSAR under different dataset evaluation
metrics. Specifically, NTU datasets have two standard eval-
uation metrics: Cross-View and Cross-Subject. The train-
ing and test sets are divided based on the views of cameras
and person identities for these two metrics, respectively. To
validate the effectiveness of FSAR, we report the additional
results on Corss-View metrics in Table 6.

4. Additional Visualization
Confusion Matrix. We supplement the visualization of

the confusion matrix of the IM and UM in Figs. 4 to 7, to
compare their variations under different ablation study set-
tings: 1) accession of IM only, 2) accession of UM only,
and 3) accession of both IM and UM. Without loss of gen-
erality, we visualize the matrices in PKU I, NTU 60, and
UESTC datasets for clarity. There exist huge variations of
similarities in UM between clients at the beginning of train-
ing (R1) and at the end of training (R300), while slight for
IM. These results are consistent with our conclusions in Sec
4.4, which further indicates the rationality of our FSAR.

Different effects of IM and UM. Apart from the man-
ually set and static matrix, the two matrices, IM and UM,
collaborate with each other, but each has its own role to
play. As illustrate in Fig. 1, IM is shared across clients to
learn domain-invariant topology, which improves the stabil-
ity of FL training ( Fig. 1 UM is further designed to main-
tain client-specific topology to prevent current clients from
being affected by other clients with different dataset scales.
Unlike IM, updated with FL strategy, UM updates its pa-
rameters individually without communication or aggrega-
tion at the server. In other words, parameters of IM partic-
ipate in the client-server communication, while parameters



Table 2. The effect of different loss weights on performance with respect to test accuracy (%). Here, λ1, λ2 and λ3 are the weights of loss
LCE , loss LKD and loss LReg , respectively. Even though other combinations bring gains, we set λ1 = 1, λ2 = 1, and λ3 = 0.1 as default
to make our FSAR more general.

Settings PKU MMD I PKU MMD II NTU RGB+D 60 NTU RGB +D 120 UESTC
λ1 λ2 λ3 acc. ∆ acc. ∆ acc. ∆ acc. ∆ acc. ∆

1 1 0.1 81.96 - 56.30 - 91.30 - 84.31 - 91.88 -
1 5 0.1 86.36 +4.40 54.60 -1.70 93.53 +2.23 85.79 +1.48 90.22 -1.66
1 0.5 0.1 83.95 +1.99 56.61 +0.31 92.72 +1.42 85.27 +0.96 91.84 -0.04
1 1 0.5 81.27 -0.69 56.97 +0.67 91.10 -0.20 85.92 +1.61 92.67 +0.79
1 1 0.05 82.48 +0.52 55.10 -1.20 92.11 +0.81 83.24 -1.07 93.01 +1.13

of UM is kept in local for each client.

5. Proof of Privacy
Differential privacy [4, 3, 2] is a privacy-preserving tech-

nology that aims to protect sensitive data by adding noises.
It constitutes a strong standard for privacy guarantees for
algorithms on aggregate datasets. This standard is defined
in terms of the concept of adjacent databases, which is spe-
cific to each application. For example, in our experiments,
each training dataset consists of a collection of video-label
pairs. Two of these sets are considered adjacent if they dif-
fer by only one entry, which means that one video-label pair
is present in one set but absent in the other.

Definition 1. Randomized mechanism A : D → R with
domain D and range R satisfies ε− differential privacy if
for any two inputs from two adjacent domains, namely d ∈
D, d′ ∈ D′. For any subset of outputs O ⊆ R, it satisfies
the following formula:

exp (−ε) ≤ Pr[A(d) = O]
Pr[A(d′) = O]

≤ exp (ε). (4)

Specifically, suppose A is our model, D is one of the
datasets that participated in FL training, andD′ is the neigh-
boring dataset ofD (where samples of one random category
are replaced with data from other datasets). We plot the
probability distribution curves in Fig. 2 and find these two
curves are close (ε = 0.1). It satisfies the inequality in
Eq. (4), namely, meets the ε− differential privacy preser-
vation. Additionally, for ε-differential privacy preservation
analysis [1, 6], our FSAR provides stronger privacy, with
ε = 0.1, compared to centralized methods with ε = 0.7.
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Table 3. The effect of Selected Clients S on performance with respect to test accuracy (%), which is the number of clients participating in
aggregation in each communication round (S = 5 is set as default). For large-scale datasets (e.g. NTU RGB+D 120), the larger S brings
more gains. While for small datasets (e.g. PKU MMD I), the smaller S bring more gains.

Settings PKU MMD I PKU MMD II NTU RGB+D 60 NTU RGB +D 120 UESTC
Selected Clients S acc. ∆ acc. ∆ acc. ∆ acc. ∆ acc. ∆

5 81.96 - 56.30 - 91.30 - 84.31 - 91.88 -
4 83.94 +1.98 56.10 -0.20 89.91 -1.39 83.98 -0.33 92.80 +0.92
3 85.74 +3.78 55.13 -0.17 90.09 -1.21 83.42 -0.89 92.69 +0.81
2 86.06 +4.10 55.98 -0.32 88.07 -3.23 81.26 -3.05 92.24 +0.36
1 86.84 +4.88 58.97 +2.67 89.04 -2.26 78.44 -5.87 93.87 +1.99

Table 4. The effect of different hyperparameter settings τ and ξ on performance with respect to test accuracy (%), which are defined in
Algorithm 1 for model parameters aggregation (τ = 0.8 and ξ = 0.8 are set as default).

Settings PKU MMD I PKU MMD II NTU RGB+D 60 NTU RGB +D 120 UESTC
τ ξ acc. ∆ acc. ∆ acc. ∆ acc. ∆ acc. ∆

0.8 0.8 81.96 - 56.30 - 91.30 - 84.31 - 91.88 -
0.8 0.6 82.21 +0.25 57.87 +1.57 90.10 -1.20 80.70 -3.61 90.67 -1.21
0.6 0.8 82.36 +0.40 54.77 -1.53 87.70 -3.60 78.89 -5.42 90.62 -1.26
0.4 0.8 84.07 +2.11 59.59 +3.29 87.97 -3.33 79.26 -5.05 92.29 +0.41
0.8 0.4 82.52 +0.56 60.12 +3.82 86.23 -5.07 79.73 -4.58 91.80 -0.08

Table 5. The effect of KD Loss on performance with respect to test accuracy (%). The elimination of KD loss reduces the performance of
the model. Compared with traditional CE loss for classification, KD loss alleviates the drift between the clients and the server.

Models PKU MMD I PKU MMD II NTU RGB+D 60 NTU RGB +D 120 UESTC
acc. ∆ acc. ∆ acc. ∆ acc. ∆ acc. ∆

w KD loss (FSAR) 81.96 - 56.30 - 91.30 - 84.31 - 91.88 -
w/o KD loss 80.76 -1.20 56.20 -0.33 88.84 -2.46 82.75 -1.56 89.90 -1.98

Table 6. The performance of FSAR on different evaluation metrics. PKU MMD I (Cross-View), PKU MMD II (Cross-View), NTU 60
(Cross-View), NTU 120 (Cross-Setup) are chosen, respectively.

Models PKU MMD I PKU MMD II NTU RGB+D 60 NTU RGB +D 120 UESTC
acc. ∆ acc. ∆ acc. ∆ acc. ∆ acc. ∆

Vanilla FSAR 79.93 - 50.19 - 79.12 - 76.11 - 83.39 -
FSAR 83.39 +3.66 57.03 +6.84 88.36 +9.24 84.72 +8.61 92.86 +9.47
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Figure 3. The effect of Local Epoch K on performance with respect to test accuracy (%), which is the number of epochs for clients local
training in each communication round (K = 1 is set as default). The larger Local Epoch K is detrimental to performance, especially on
small-scale datasets (e.g. PKU MMD I and UESTC), since it brings more bias in clients.
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Figure 4. Visualization of IM under the FSAR (A + IM + UM) settings for PKU MMD I, NTU RGB+D 60, and UESTC datasets, at the
beginning of the training (R1) and at the end of the training (R300).
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Figure 5. Visualization of IM under the FSAR (A + IM) settings for PKU MMD I, NTU RGB+D 60, and UESTC datasets, at the beginning
of the training (R1) and at the end of the training (R300).
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Figure 6. Visualization of UM under the FSAR (A + IM + UM) settings for PKU MMD I, NTU RGB+D 60, and UESTC datasets, at the
beginning of the training (R1) and at the end of the training (R300).
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Figure 7. Visualization of UM under the FSAR (A + UM) settings for PKU MMD I, NTU RGB+D 60, and UESTC datasets, at the
beginning of the training (R1) and at the end of the training (R300).


