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Table 1. Preliminaries in the paper.

Variables Description

VCan
Rf voxel grid contains canonical radiance feature

VCan
p voxel grid contains coordinate of each voxel

Fθ1 light weight MLP network estimating canonical radiance field
VCan

R canonical radiance field estimated by Fθ1
VCan

σ canonical density voxel grid in VCan
R

VCan
cf canonical color feature voxel grid in VCan

R
VCan

Df voxel grid contains canonical deformation feature
Fθ2 light weight MLP network estimating trajectory of each voxel
VCan

T trajectory voxel grid, containing DCT params of each voxel
Vt

flow deformation flow of each voxel from canonical to time t
Fwarp average splatting operation
Vt

R radiance field at time t warped from VCan
R

Fθ3 Inpaint Network
Vt

RInp
inpainted radiance field at time t by Fθ3

Vt
RUp

upsampled radiance field at time t

Frender volume rendering function
CInp(r) color of ray r rendered from field Vt

RInp

CUp(r) color of ray r rendered from field Vt
RUp

1. More Implementation Details

1.1. Preliminaries

We provide preliminaries in Table 1

1.2. Network Architecture

There are four networks in proposed network: canonical
radiance network Fθ1 , canonical deformation network Fθ2 ,
view dependent color network Fθ4 and inpaint network Fθ3 .

Canonical radiance network Fθ1 is a 3 layer MLP, with
width set to 128. The input contains the radiance feature
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three authors also with the Shaanxi Key Laboratory of Information Ac-
quisition and Processing.

sampled from radiance feature grid VCan
Rf with dimension

12, and embedded position with dimension 33. The output
contains density whose dimension is 1, and color feature
whose dimension is 3 or 12, depending the training stage.

Canonical deformation network Fθ2 is a 4 layer MLP,
with width set to 64. Similar with canonical radiance net-
work, the input of Fθ2 contains the deformation feature and
embedded position with dimension 33. We set the deforma-
tion feature dimension to be 0 and the number of dct bases
to be 15 for D-NeRF dataset. For Hypernerf dataset, we set
the deformation feature dimension to be 12 and the number
of dct bases to be 25.

View dependent color network Fθ4 is a simpler MLP
with only 2 layers and width is 64. For input, the dimen-
sion of embedded view direction is 27 and color feature is
12. The output is the rgb color with dimension 3.

Inpaint network Fθ3 consist of a UNet structure and a up-
sample layer. The UNet structure has 4 encode layers and 3
decode layers. Each encode layer consists of one max pool-
ing layer and two convolution layers. For one convolution
layer, there is one instance norm, followed by convolution
and ReLU activation. Each decode layer consists of one
up-sample interpolation layer and two convolution layers,
which are the same with encode layer. The up-sample layer
has the same structure with the decode layer.

1.3. Average Splatting vs. Softmax Splatting

We use average splatting in this paper, rather then more
complex splatting methods in [3], like softmax splatting.
We tried to predict weights for softmax splatting, and there
is no obvious improvement compared with average splat-
ting. It may introduce too much complexity and we find the
UNet could refine the voxel grid to some extend. Average
splatting is enough in our setting.



1.4. Losses and Hyper-parameter Settings

Following DVGO [6], we use Lptc to directly supervise
the color of sampled points. The intuition is that sampled
points with bigger weights contribute more to the rendered
color.

Lptc =
1

|R|
∑
r∈R

L(CInp(r)) +
1

|R|
∑
r∈R

L(CUp(r)), (1)

L(C(r)) =
1

K

∑K

k=1
Aaccum(k) ∥c(wk)−Cgt(r)∥22 ,

(2)

Aaccum(k) = T (wk)α (σ(wk)δk) . (3)

Also, we use the background entropy loss Lbg to encour-
age the densities concentrating on either the foreground or
the background.

Lbg =
1

|R|
∑
r∈R

L(AInp(r)) +
1

|R|
∑
r∈R

L(AUp(r)), (4)

L(A(r)) =− 1

K − 1

∑K−1

k=1
Aaccum(k)log(Aaccum(k))

+ (1−Aaccum(k))log(1−Aaccum(k)),

(5)

As show in Eq. (15) of the paper, the overall loss can be
written as

L =Lphoto + w1Lptc + w2Lbg + w3Lflow + w4Lvdiff

+ w5Ltv(VCan
σ ) + w6Ltv(Vt

flow) + w7Ltv(D),
(6)

where w1, w2, w3, w4, w5, w6 and w7 are weights to bal-
ance each component in the final coarse loss. In experi-
ments, we set w1 = 1e − 1, w2 = 1e − 2, w3 = 1e − 5,
w4 = 0., w5 = 1e − 6, w6 = 1e − 3 and w7 = 1e − 1
in coarse stage for all datasets, and set w1 = 1e − 2,
w2 = 1e − 3, w3 = 1e − 5, w4 = 1e − 5, w5 = 1e − 6,
w6 = 1e− 3 and w7 = 1e− 1 in fine stage for all datasets.

For progressive training in fine stage, we first train with
10 images with closest time steps with canonical step, and
progressively add image with the closest time step every 60
iterations.

1.5. Training Strategy and Settings

We propose a coarse-to-fine training strategy. For the
coarse stage, we set the expected voxel number to 673, the
scale factor of the inpaint network is 1.5, and the iteration
number is 20k. As the purpose of the coarse stage is learn-
ing a proxy geometry to calculate the bounding box for the
fine stage, we do not use inpaint network during the coarse

stage. For the fine stage, the expected voxel number is set
to 803 for D-NeRF dataset and 703 for HyperNeRF dataset.
The scale factor of the inpaint network is 2.0 and the it-
eration number is 100k. We use Adam optimizaer and set
learning rate 1e-1 for voxel grids and 1e-3 for networks.
The training process of a scene takes around 1 day on a
GeForce RTX 3090 GPU. Our final model size on aver-
age is 260M for D-NeRF dataset and 440M for HyperNeRF
dataset. The rendering peed is 7s per image for D-NeRF
dataset and 15s per image for HyperNeRF dataset.

1.6. Lego Complete Dataset

We build a new dataset, named Lego Complete Dataset,
that animates the object LEGO with three different mo-
tion patterns. For each scene, the test set is split into
three categories to evaluate three abilities: space interpo-
lation, time interpolation, and canonical interpolation abil-
ities. For space interpolation ability, we test four random
views for each training time step. Also, we interpolate
three time steps between two near training time steps to test
the model’s generalization ability over unseen times. Fi-
nally, to evaluate the learned canonical radiance field, we
test 50 random views in canonical space. This results in
200 + 197 + 50 = 447 test images in the test set.

2. More Results
2.1. Results on NHR dataset

We also test our method on NHR dataset [7]. We test all
four scenes with 100 frames selecting 90% views for train
and 10% views for test. Quantitative results are shown in
Table 2, which shows ours achieving best results consis-
tently. We show qualitative comparison in Figure 1, and our
method could render clean and detailed images. We also
visualize the learnt trajectories in Figure 2. Use Acrobat to
view animations.

2.2. Quantitative Results

Detailed results for D-NeRF Dataset We show more de-
tailed results in Table 3 for D-NeRF dataset. As show in
Table 3, the inpaint network plays a relative important role.
Also, the up-sample layer could improves the performance,
which proves this layer learns to recover the details of the
3D voxel grid. This point gives some insight for image
super-resolution direction, which is working in 3D dimen-
sion may benefit the 2D image tasks. Finally, the total vari-
ation losses helps the training to be more stable and get
cleaner images.
Resolutions We report performance with different reso-
lutions on HyperNeRF dataset in Figure 3. According to
Figure 3, the resolution of voxel grid plays an important
role when it is relative small and the improvement of the
performance decrease when resolution increasing.



Table 2. Quantitative comparison on NHR dataset. The red text indicates the best and blue text is the second best result.

Sport 1 Sport 2 Sport 3 Bacsketball Mean
Methods type PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
TiNeuVox-S [1] NPC 26.06 0.93 0.10 25.98 0.93 0.11 25.90 0.93 0.11 23.75 0.91 0.14 25.42 0.92 0.12
TiNeuVox-B [1] NPC 26.44 0.93 0.10 26.68 0.94 0.10 26.09 0.93 0.11 25.06 0.92 0.12 26.07 0.93 0.11

NDVG [2] PC 23.66 0.89 0.15 24.43 0.91 0.13 22.54 0.88 0.16 22.55 0.89 0.17 23.29 0.89 0.15
Ours PC 27.71 0.95 0.08 27.89 0.95 0.08 27.57 0.94 0.08 24.85 0.93 0.11 27.00 0.94 0.09

Table 3. Quantitative comparison. Comparison of our method with others on LPIPS (lower is better) and PSNR/SSIM (higher is better)
on eight dynamic scenes of the D-NeRF dataset.

Hell Warrior Mutant Hook Bouncing Balls
Methods type PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
TNeRF [5] N 23.19 0.93 0.08 30.56 0.96 0.04 27.21 0.94 0.06 32.01 0.97 0.04

TiNeuVox-S (1003) [1] NPC 27.00 0.95 0.09 31.09 0.96 0.05 29.30 0.95 0.07 39.05 0.99 0.06
TiNeuVox-B (1603) [1] NPC 28.17 0.97 0.07 33.61 0.98 0.03 31.45 0.97 0.05 40.73 0.99 0.04

DNeRF [5] PC 25.03 0.95 0.07 31.29 0.98 0.03 29.26 0.97 0.12 38.93 0.99 0.10
NDVG [2] PC 25.53 0.95 0.07 35.53 0.99 0.01 29.80 0.97 0.04 34.58 0.97 0.11
Ours PC 27.71 0.97 0.05 34.97 0.98 0.03 32.29 0.98 0.04 40.02 0.99 0.04

Ours notv 1 PC 27.96 0.97 0.05 35.26 0.98 0.03 29.57 0.96 0.06 40.40 0.99 0.05
Ours noup 2 PC 27.60 0.96 0.06 34.15 0.98 0.04 31.51 0.97 0.04 38.89 0.99 0.05
Ours noinp 3 PC 27.15 0.96 0.06 33.98 0.98 0.03 31.77 0.97 0.04 38.22 0.99 0.04

Lego T-Rex Stand Up Jumping Jacks
Methods type PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
TNeRF [5] N 23.82 0.90 0.15 30.19 0.96 0.13 31.24 0.97 0.02 32.01 0.97 0.03

TiNeuVox-S (1003) [1] NPC 24.35 0.88 0.13 29.95 0.96 0.06 32.89 0.98 0.03 32.33 0.97 0.04
TiNeuVox-B (1603) [1] NPC 25.02 0.92 0.07 32.70 0.98 0.03 35.43 0.99 0.02 34.23 0.98 0.03

DNeRF [5] PC 21.64 0.84 0.17 31.76 0.98 0.04 32.80 0.98 0.02 32.80 0.98 0.04
NDVG [2] PC 25.23 0.93 0.05 30.15 0.97 0.05 34.05 0.98 0.02 29.45 0.96 0.08
Ours PC 25.27 0.94 0.05 30.71 0.96 0.04 36.91 0.99 0.02 33.55 0.98 0.03

Ours notv 1 PC 24.33 0.89 0.11 35.02 0.99 0.02 37.01 0.99 0.02 35.14 0.98 0.03
Ours noup 2 PC 25.20 0.93 0.06 30.24 0.97 0.05 35.47 0.98 0.02 33.14 0.98 0.04
Ours noinp 3 PC 25.42 0.93 0.06 30.00 0.97 0.04 36.46 0.99 0.02 31.24 0.98 0.04
1 not use the three total variation losses 2 not up-sample the voxel grid 3 not use the inpaint network

Table 4. More results. Mean of Hell Warrior, Mutant, Hook and Bouncing Balls in DNeRF dataset.

Method ours w/o w/o w/o w/o can-time w/o w/o VRUp

Ltv Lflow Lvdiff coarse t at mid view dir photo

PSNR 33.75 33.30 33.74 33.57 31.63 34.09 22.81 31.56
SSIM 0.979 0.974 0.978 0.977 0.967 0.980 0.925 0.966
LPIPS 0.040 0.048 0.039 0.041 0.058 0.037 0.096 0.057

Regularization terms We study the effect of all regular-
ization terms we proposed, including Lflow, Lvdiff and Ltv in
Table 4. We could observe that all these three regulariza-
tion terms has positive effect on the performance, but the
improvement is minor. This proves the improvement of our
method compared with others come from the forward warp-
ing desgin we proposed in the paper. Also, backward flow
based method NDVG [2] use similar regularization terms

with ours, and our method has clear advantage compared
with NDVG [2].

Training strategy We also set our method without coarse
stage training, show in Table 4 (w/o coarse). The perfor-
mance drops significantly that is reasonable, because the
voxel grid covers bigger space without filtering with proxy
geometry trained by coarse training.

Canonical setup In our method, we set canonical time
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Figure 1. NHR dataset qualitative comparison. We show some
synthesized images on NHR dataset.

Figure 2. Trajectory visualization Use Acrobat to view animations.

to be the first frame for D-NeRF dataset to compare with
physical canonical based method and the middle frame for
HyperNeRF dataset for better performance. Setting canoni-
cal time to be the middle frame helps improving the perfor-
mance as the state of the middle frame geometry is closer
to other time steps compared with the first frame. To prove
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Figure 3. Performance with different resolutions

this, we set canoical time to be middel frame in Table 4
(can-time t at mid), and the PSNR improves slightly.
Ray direction modeling According to Nerfies[4], we need
to transfer the current view orientation to the directions in
the canonical workspace. But we think using them directly
is an acceptable solution for most papers in this area. We
leave this as an open question for further study. We test with
setting all directions to (0,0,1), the PSNR drops obviously
in Table 4 (w/o view dir). This proves the current solution
works well to some extend.
Photmetric loss for VRUp

We use photometric terms on
VRUp

to make sure the warped grid before inpainting could
already render reasonable images. This make sure the UNet
is actually doing ‘inpainting’. Figure 5 (bottom right) shows
an example of how inpainting works. Also, we do observe
inpainting and upsampling could refine grids. For videos
and Fig. 8 in the main paper, the trajectories are reason-
able which means we do learn trajectories without inpaint-
ing overfitting. We also test w/o photometric terms of VRUp

in Table 4 (w/o VRUp
photo) and the performance drops as

there is no direct supervise signal for trajectory training.

2.3. Qualitative Results

We show rendered images of our method with different
resolutions on HyperNeRF dataset in Figure 4. With bigger
resolutions, our method could recover more details, like the
pattern of the 3D printer (first row), details of broom (sec-
ond row) and details of the head in peel-banana (last row).
Also, we provide more visual comparison with other meth-
ods in Figure 4.

We show the rendered images and depths of our methods
and D-NeRF[5] in Figure 5, compared with ground truth.
Since we aims to synthesis dynamic scenes from monoc-
ular camera, which is a nontrivial problem, the model is
highly possible to over-fit the training images. In Figure 5,
DNeRF is an example, which produce some clouds in the
space which cause artifacts in other views. This is one of
the reasons to build lego complete dataset, testing the abili-
ties of the model to interpolate the time and space (including
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Figure 4. HyperNeRF dataset qualitative comparison. We show some synthesized images on HyperNeRF dataset of our method with
different resolutions and other methods.

canonical space). Without total variation losses, we could
get sharper depth but there may some noise points on the

images. Without up-sample layer, the image is blurer (bet-
ter zoom in for details). Without inpaint network, the rub-
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Figure 5. Lego Complete dataset qualitative comparison. We show some synthesized images and depth rendered at the same test view
selected from one scene of lego complete dataset with different settings.

ber band of the lego arms disappears. The rubber band at
this time step is stretched and this motion is non-rigid. This
non-rigid motion would cause one-to-many issue, compared
with rigid motions of mechanical structures of this lego.
This proves our inpaint network could handle the one-to-
many issue of forward warping.

We show the comparison of canonical image between
D-NeRF[5] and proposed method in Figure 6. Figure 6
shows our method could recover correct canonical geome-
try in the canonical compared with DNeRF[5], which shows
the power and potential of the forward warping.

We show more results in our video, including canonical
comparison, trajectory visualization and other images ren-
der at novel views with different setting. Please refer to the

supplement video for more information.
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