
From Sky to the Ground: A Large-scale Benchmark and Simple Baseline
Towards Real Rain Removal

Supplementary Material

1. Overview
In this supplementary material, we present more analysis and experimental results.

• We introduce the phenomenon of ground splashing and its negative effects. (Section 2)
• We conduct analysis among existing paired real rain benchmarks. (Section 3)
• We provide additional ablation study of proposed RLRTR and SCD-Former. (Section 4)
• We show more experimental results of datasets generalization and high-level tasks. (Section 5)
• We discuss the time consuming, user study and the detailed solution of RLRTR. (Section 6)

2. What is Ground Splashing Rain?
Ground splashing rain is commonly observed under heavy rain in the real world. It is caused by the reflection of rain

hitting on the ground and presents as dense point-shape texture, splashing droplets or water waves, as shown in Fig. 1, which
interferes the visibility of the traffic signs on the ground, lane lines, speed limits, crossing road, etc. The splashing rain on
the ground causes tremendous negative effects on downstream vision tasks such as objects detection and segmentation.

Figure 1. Typical examples of ground splashing rain. It presents as dense and messy point-shape texture, splashing droplets or water waves
on the surface of road, which ruins the visibility of traffic signs and brings negative interference to vision systems such as self driving.

3. Benchmark Analysis
In this section, we make a brief comparisons of existing paired real rain benchmarks SPA-data, GT-Rain and RealRain-1K

and further analyse their limitations in Fig. 2. Then we explain how to overcome the bottleneck of real rain removal by our
proposed benchmark, LHP-Rain.

3.1. SPA-data

SPA-data is the first paired real rain dataset which contains 170 sequences collected from Internet and real world. The
feature of SPA-data is the strictly paired rain/clean images which enhances the learning of real rain. The dataset releases the
image patches (256*256) for training. Typical examples of SPA-data are illustrated in the first row of Fig. 2. On the one hand,
SPA-data contains limited rain categories and narrow views. As shown in Fig. 2(a), most rainy images from SPA-data have
similar rain streaks and narrow views which focus on the roof, eave, building and plants without clear objects. On the other
hand, sequences collected from Internet contain obvious watermarks, which disturb the original rain and image appearance.
Therefore, SPA-data has limited generalization on other real rain datasets.

1



(a) Narrow views with similar rain streaks 

(c) Dense rain streaks and highlight occlusion with limited views

(d) Large-scale and high-quality paired rain benchmark with abundant objects and annotations

SPA-data

(256*256)

GT-Rain

(666*339)

RealRain-1K

(1512*973)

LHP-Rain

(1920*1080)

R
ai

n
y

G
T

R
ai

n
 L

ay
er

R
ai

n
y

G
T

R
ai

n
y

R
ai

n
 L

ay
er

L
ab

el
s

(b) Haze-like veiling effects 
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Figure 2. Benchmark analysis of existing paired real rain datasets. We choose the typical examples from existing four benchmarks:
SPA-data, GT-Rain, RealRain-1K and LHP-Rain. The Rainy, GT and Rainy layer images are illustrated.



Rainy w/o non-local self-similarity w/o TV regularization w/ both

Figure 3. Ablation study of the robust low-rank tensor recovery model. From left to right, the first column is the original rainy frame and
the remaining three columns represent the model without non-local self-similarity prior, the model without local smoothness prior and the
model with both.

3.2. GT-Rain

GT-Rain is a paired real rain dataset proposed recently, which contains 202 sequences collected from Youtube live stream
with average resolution 666*339. GT-Rain leverages the static surveillance webcams to produce rain/clean image pairs. As
shown in Fig. 2(b), it contains rain streak and haze-like veiling effect due to the long interval between rainy and clean images,
which effectively enriches the abundance of rain categories. However, the poor image quality issue limits the performance of
GT-Rain. Due to the compression of online videos, the poor image quality leads to the change of original rain appearance,
which is suppressed or even unseen in the rainy images.

3.3. RealRain-1K

RealRain-1K is a very recently proposed datasets as well, which collects 1120 sequences from Internet and real world.
To solve the problem of low resolution, the average resolution of RealRain-1K increases to 1512*973, which is larger than
SPA-data and GT-Rain. Typical examples are illustrated in Fig. 2(c). The strength of RealRain-1K is that it contains clear
rainy images including abundant rain streak, veiling effect and highlight occlusion. However, most rainy images of the dataset
focus on the dense rain streaks in front of the camera while ignoring the details of background. It is unreasonable because
the rain appearance is entangled with environment [8]. Therefore, the background of RealRain-1K suffers from out-of-focus
blur and even contains nothing without clear objects, which limits the further applications on high-level tasks.

3.4. LHP-Rain

To solve the limitations of existing datasets, we proposed a large-scale and high-quality paired real rain benchmark,
LHP-Rain. Typical examples are illustrated in Fig. 2(d). First, the LHP-Rain contains diverse rain categories with very
large-scale, including 3000 video sequences with over 1 million frame pairs. Apart from the conventional streak, veiling and
highlight occlusion, our benchmark contains representative the challenging case ground splashing rain. Moreover, the LHP-
Rain is collected by the smartphone with high-resolution (1920*1080) and abundant objects for self-driving and surveillance.
Five typical objects including person, car, bicycle, motorcycle and bus are annotated by bounding box with 326,961 instances
totally. For lane segmentation, we annotate 24,464 lane masks to evaluate the effect of rain splashing removal. Last but not
least, the high-quality ground truth enhances the discriminative representation of rain feature learning.

4. Ablation Study
4.1. Ablation Study on Video Deraining: RLRTR

Effectiveness of Non-Local Self-similarity. The non-local prior is used to explore the self-similarity of the spatial dimen-
sion. To verify its effectiveness, we perform an ablation study on Fig. 3. It can be observed that the results obviously exist the
rain residual without the non-local self-similarity prior, implying that relying only on the temporal information is not enough
and the non-local low-rank property can boost the deraining effect.
Effectiveness of Total Variation Regularization. The total variation regularization is exploited to characterize the local
smoothness of the temporal dimension. As shown in Fig. 3, the results are slightly blurry without the local smoothness prior,



Rainy Image w/o cross-layer attention w/ cross-layer attention

Figure 4. Effectiveness of Cross-Layer Attention. CLA could further remove the challenging rain residual left on the car and prevent the
image layer from being destroyed, such as the white holders of street lamps.

iPhone13 DSLRHuawei P40 Realme GT2

Figure 5. Generalization of SCD-Former on different devices. The rainy images (first row) and deraining results (second row) demonstrate
that the SCD-Former model trained on LHP-Rain generalizes well on the real rainy images captured by different devices with specific ISP
pipelines, iPhone13, Huawei P40, Realme GT2, DSLR, etc.

which demonstrate that it has little effect on the results of restoration and the global low-rank prior of the temporal dimension
has been able to capture most of the temporal information.

4.2. Ablation Study on Image Deraining: SCD-Former

Effectiveness of Cross-Layer Attention. In order to further evaluate the effectiveness of cross-layer attention (CLA) module
in SCD-Former, more visualization results of ablation study are shown in Fig. 4. Specifically, the residual rain left on the
black car could be paid more attention to remove with CLA, because the highly attentive location of rain residual can be
obtained by image layer. Moreover, the rain-like structures in the image layer are wrongly removed, such as the white
holders on the street lamps. Here CLA could provides an extra prior for enhanced feature representation, which prevents the
image layer from being destroyed.

5. Discussion
Generalization on Different Digital Devices. We conduct experiments on the images collected by different devices to
evaluate the generalization of SCD-Former. In Fig. 5, SCD-Former is very robust to the data captured by different equipments
from smartphones to DSLR, which means that the influence of rain obviously outweighs that of ISP pipelines.
Evaluation of the Diversity of LHP-Rain Benchmark. To evaluate the rain diversity on other real rain datasets, we train



Rainy Image SPA-data GT-Rain LHP-RainRealRain-1K

Figure 6. Evaluation of the diversity of the LHP-Rain. We train the same model on different datasets: SPA-data, GT-Rain, RealRain-1K
and LHP-Rain, and then test on other datasets. The model trained on LHP-Rain has achieved better deraining results in the real world.



Rainy Image JORDER-E MPRNet IDT SCD-Former

Figure 7. Evaluation of high-level tasks such as object detection and lane segmentation. The result shows that the motorcycle and bikes
covered with rain could be further detected after deraining by SCD-Former, and the lane on the ground could be predicted completely due
to the removal of ground splashing water.

Table 1. Evaluation of high-level tasks on deraining results.
Method Det. (mAP) Gain (Det.) Seg. (Acc) Gain (Seg.)
Rainy 0.543 - 0.237 -
GT 0.633 +0.090 0.480 +0.243

the same SCD-Former model on different paired real rain datasets: SPA-data, GT-Rain, RealRain-1K and LHP-Rain, and
then test on real rain images from Internet. The comparing results are illustrated in Fig. 6. We choose typical and challenging
real rain images such as dense rain streaks, veiling effect and ground splashing rain. It is observed that the model trained on
SPA-data and RealRain-1K could remove a few rain streaks, but the backgrounds removed as well, such as the wheel of car.
In addition, rain residual is still remained in the image layer. Moreover, the model trained on GT-Rain could not generalize
on other real rain datasets as well, which enhances the contrast of residual rain in the image layer. The model trained on LHP-
Rain has the best deraining performance which simultaneously removes rain streaks, veiling and ground splashing water and
preserve the image details. The results strongly support the great generalization of LHP-Rain.
Evaluation on High-Level Tasks. The abundant annotations provided in LHP-Rain could be utilized to evaluate the image
deraining results on high-level tasks. We conduct object detection and lane segmentation experiments and the visualization
results of high-level tasks are illustrated in Fig. 7. The result shows that the motorcycle and bikes covered with rain could
be further detected after deraining by SCD-Former, and the lane on the ground could be predicted completely due to the
removal of ground splashing water, which is consistent with the quantitative results reported in the main text. Moreover, we
also provide oracle GT in Table 1 with detection mAP/0.633 and lane seg Acc/0.480 while that of rainy is mAP/0.543 and
Acc/0.237, respectively. This strongly supports potential of LHP-rain for high-level tasks.
Video Deraining Time Consuming and Results. The proposed RLRTR needs 9.57s on a 256*256*300 video clip with
an Intel i7-9700F CPU. Moreover, it is difficult to evaluate the performance of the video deraining results namely the GT
quality. We look for 25 volunteers to anonymously rate (1 to 10) the deraining results of 50 scenes, and write a simple
scoring software to guarantee justice and equity of rating. The rank-n scores [4] for each method in Figure 8 shows that
RLRTR consistently outperforms the competing methods by a large margin.

6. Solution of the Video Deraining RLRTR
The original optimization problem is shown as follow:{

B̂, R̂, Ĵi, τ̂ , Q̂i
}

= arg min
B,R,Ji,τ,Qi

1

2
||B +R−O ◦ τ ||2F + µ||R||1

+ ω
∑
i

(
1

λ2
i

||SiB×3Qi − Ji||2F + ||Ji||tnn
)

+ γ||∇tB||1,
(1)

where O ∈ Rh×w×t is the rainy video, B ∈ Rh×w×t is the rain-free video, R ∈ Rh×w×t represents the rains, τ denotes the
affine transformation to ensure the rainy video of each frame is pixel-level aligned, Ji represents the low-rank approximation,
Qi ∈ Rd×t(d � t) is an orthogonal subspace projection matrix used to capture the temporal low-rank property and SiB ∈
Rp2×k×t is the constructed 3-D tensor via the non-local clustering of a sub-cubic ui ∈ Rp×p×t [2].
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Figure 8. User study of different video deraining methods.

Optimization. To solve this difficult problem, we apply the ADMM [5] to decouple the Eq. (1) into several subproblems.
1) Affine Transformation τ : By ignoring variables independent of τ , we can obtain following subproblem:

τ̂ = arg min
τ

1

2
‖ B +R−O ◦ τ ‖2F . (2)

Since O ◦ τ is a nonlinear geometric transform, it’s difficult to directly optimize τ . A common technique is to linearize
around the current estimate [6]. After linearizing O ◦ τ , the Eq. (2) can be transform into following formula:

∆τ̂ = arg min
τ

1

2
‖ B +R−O ◦ τ −∇O∆τ ‖2F . (3)

Thus, the Eq. (3) can be solved with closed-form solution:

∆τ̂ = (∇O)†(B +R−O ◦ τ), (4)

where (∇O)† denotes the Moore-Penrose pseudoinverse of∇O. And we have:

τ̂ = τ + ∆τ̂ . (5)

2) Rain EstimationR: Fixed other variables, we can get following subproblem:

R̂ = arg min
S
µ ‖ R‖1 +

1

2
‖ B +R−O ◦ τ ‖2F . (6)

The Eq. (6) can be solved by introducing the soft-thresholding operator [5]:

Φυ(x) =

 x− υ, if x > υ
x+ υ, if x < −υ

0, otherwise
(7)

Then, we can easily get its closed-form solution:
R̂ = Φµ (−B +O ◦ τ) . (8)

3) Subspace Projection Qi: We enforce the orthogonal constraint on QTi Qi = I with the following subproblem:

Q̂i = arg min
QTi Qi=I

1

λ2
i

||SiB×3Qi − Ji||2F . (9)

According to [7], we perform a model-3 unfolding and singular value decomposition on SiB, that is (SiB)
(3)

= USV T .
Then let the Q̂i = (U(:, 1 : d))T , where U(:, 1 : d) means to select the first d left singular vectors corresponding to the d
largest singular values, where the d is the measurement of the intrinsic subspace of the temporal dimension, we empirically
set (d ≤ 3).

4) Low-rank Approximation Ji: Dropping the irrelevant variables, we can get following subproblem:



Ĵi = arg min
Ji

1

λ2
i

‖ SiB×3Qi − Ji ‖2F +||Ji||tnn, (10)

where λ2
i is the noise variance, ‖ Ji‖tnn =

∑
p

∣∣∣σp(J (2)
i )
∣∣∣
1

is the tensor nuclear norm, J (2)
i denotes the model-2 unfolding

matrix of the Ji, and σp(J
(2)
i ) represents the p-th singular value of the J (2)

i . This minimization problem is usually solved by
the singular value thresholding algorithm [1, 2], we adopt the weighted nuclear norm minimization to boost the performance
[3]. Thus, we can get the following formula:

Ĵi = UΨW (Σ)V T , (11)

where UΣV T is the singular value decomposition of the mode-2 unfolding matrix of the SiB×3Qi, and ΨW (Σ)pp =
max(Σpp − Wpp, 0) is the generalized soft-thresholding operator with the weight vector W . After we obtain the Ji, we
conduct the tensor folding to transform it into the 3D tensor Ji.

5) Clean Video Estimation B: We fix the other variables and optimize B with the following subproblem:

min
B

1

2
||B +R−O ◦ τ ||2F + ω

∑
i

1

λ2
i

||SiB×3Qi − Ji||2F + γ||∇tB||1, (12)

where the first term is the fidelity term, the second term is the low-rank constraint, and the third term represents the local
smoothness constraint. The linear operator S is used to extract the cubic from the video and it can be fast solved on a
pixel-by-pixel manner. However, the Eq. (12) is difficult to solve directly. To solve this problem, we introduce the auxiliary
variables Z = ∇tB and C = B to spilt the three terms, and the Eq. (12) can be transformed into the following augmented
Lagrangian function:

Lβ(B,Z, C) =
1

2
‖ B +R−O ◦ τ ‖2F +ω

(∑
i

1

λ2
i

‖ SiC×3Qi − Ji ‖2F + ‖ Ji‖tnn

)

+ γ ‖ Z‖1 +
β

2
‖ Z −∇tB −

Γ1

β
‖2F +

β

2
‖ C − B − Γ2

β
‖2F ,

(13)

where Γ1 and Γ2 are the Lagrangian multipliers, and β is a positive scalar. And the Eq. (13) can be separated into several
subproblems:

Bm+1 = arg min
B

1

2
‖ B +R−O ◦ τ ‖2F +

β

2
‖ Zm −∇tB −

Γm1
β
‖2F +

β

2
‖ Cm − B − Γm2

β
‖2F

Zm+1 = arg min
Z

γ ‖ Z‖1 +
β

2
‖ Z −∇tBm+1 − Γm1

β
‖2F

Cm+1 = arg min
C
ω
∑
i

1

λ2
i

‖ SiC×3Qi − Ji ‖2F +
β

2
‖ C − Bm+1 − Γm2

β
‖2F .

(14)

We adopt the fast 3-D Fourier transform for fast calculate the clean video B, the following formula is its closed-form
solution.

Bm+1 = F−1

(
F(O ◦ τ −R+ β(∇t)T (Zm − Γm1

β )) + β(Cm − Γm2
β ))

I + βF∗(∇t) ◦ F(∇t) + βI

)
, (15)

where F is the fast 3-D Fourier transform, F−1 is its inverse transform, and F∗ represents its conjugate transform.
As for the auxiliary variable Z , we can use the soft-thresholding operator to get its closed-form solution:

Zm+1 = Φ γ
β

(
∇tBm+1 +

Γm1
β

)
. (16)

For the auxiliary variable C, we have the following formula:

Cm+1 =

(
2ω

λ2
i

∑
i

(Si)TSi + βI

)−1

×

(
2ω

λ2
i

∑
i

(Si)TJi×3(Qi)
T

+ βBm+1 + Γm2

)
. (17)

where (Si)TJi is the sum value of all overlapping reconstruction cubics that cover the pixel location, and (Si)TSi corre-
sponds to the number of the overlapping cubics. Then the Eq. (17) can be easily solved by the pixel-to-pixel division.



For the Lagrangian multipliers, we update them with the following formulas:

Γm+1
1 = Γm1 + β

(
∇tBm+1 −Zm+1

)
Γm+1

2 = Γm2 + β
(
Bm+1 − Cm+1

)
.

(18)

Algorithm 1 The robust low-rank tensor recovery model for acquiring paired GT

Require: The rainy video O
1: Initialization:;
2: • Set the regularization parameters µ, ω, λi, γ;
3: • Set the temporal subspace dimension d ≤ 3;
4: for l=1:L do
5: Group similar cubics SiBl+1;
6: Estimate affine transformation τ l+1 via Eq. (5);
7: Estimate rain estimation Rl+1 via Eq. (8);
8: Estimate subspace projection Qil+1 via Eq. (9);
9: Estimate low-rank approximation Jil+1 via Eq. (11);

10: for m=1:M do
11: Estimate clean video Bm+1 via Eq. (15);
12: Estimate auxiliary variables Zm+1, Cm+1 via Eq. (16) and Eq. (17), respectively;
13: Update lagrangian multipliers Γm+1

1 and Γm+1
2 via Eq. (18);

14: end for
15: end for
Ensure: The rain-free video B.
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