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A. Overview and Outline

In our paper, we seek to address the token overfocusing issue of vision transformers and improve their overall robustness.
To this end, we propose two general techniques, the Token-aware Average Pooling (TAP) module and the Attention Diver-
sification Loss (ADL). In this supplementary material, we conduct additional discussions on both techniques and provide
complementary experiments. We organize the supplementary as follows:

* In Section B, we discuss the computational complexity of our Token-aware Average Pooling (TAP) module. Based on the
considered baseline FAN-B-Hybrid, TAP only takes around 2% of the number of floating-point operations (FLOPs) in each
self-attention layer, and less than 1% of the whole model.

* In Section C, besides corruption robustness, we demonstrate that the proposed methods also obtain promising improvement
in terms of adversarial robustness. Then, we study the effect of the attention threshold 7 in computing our Attention
Diversification Loss (ADL). In addition, we provide more results for image classification and semantic segmentation.

* In Section D, we provide more visualization results to study the stability of attention maps in vision transformers. We
demonstrate that the token overfocusing issue is particularly severe in relatively deep layers. We also highlight that this
issue can be observed across diverse architectures (e.g., RVT [18] and FAN [31]) and tasks (including image classification
and semantic segmentation). In addition, we provide more visual comparisons for the predicted segmentation masks.

B. Computational Complexity Analysis of TAP

As mentioned in the main paper [7], we introduce our TAP into each basic block to improve the robustness of the attention
mechanism. We already demonstrated that our TAP only adds minimal computational overhead. Thus, in the following,
we evaluate the computational complexity in terms of floating-point operations (FLOPs) to justify our argument. Given the
input tokens z € R *WxC ywith the spatial resolution of H x W and feature dimension of C, the complexity of a standard
self-attention layer is':

O(SelfAttention) = 4HWC? + 2(HW)2C )
Based on the standard self-attention layer, we propose to introduce an additional TAP that exploits a dilation predictor (a
two-layer convolutional module) to predict the weights for K branches and mix the features in a weighted sum manner. In
this sense, the overall complexity consists of the complexities of the dilation predictor (O HW CK + 9HW K?), K average
pooling operations (HW C' K), and the weighted sum operation (HW C K). Thus, the complexity introduced by TAP is:

O(TAP) = 11HWCK +9HWK? (ii)
When combining TAP with the standard self-attention together, the overall complexity is:
O(TAP—SelfAttention) = 11HWCK + 9HW K? + AHWC? + 2(HW)?C (iii)

As for our best model built upon FAN-B-Hybrid [31], we have H=W =14, C'=448, and K=4. By substituting them into
the above equations, the cost introduced by our TAP only takes around 2% of the complexity of each self-attention block.
When considering the whole model that consists of both convolutional modules/heads and self-attention blocks, the additional
complexity is less than 1% in practice, showing that our TAP only introduces minimal computational overhead.

A typical self-attention module consists of a fully-connected layer before and after the attention module, respectively. We compute the overall com-
plexity of all the involved layers, which has been discussed and reported in [14].



C. More Discussions and Quantitative Results

In this paper, we mainly focus on improving the robustness against common corruptions. Besides this, we additionally
investigate whether the improvement can also generalize to adversarial robustness. In this part, we report the robustness
against adversarial attacks and demonstrate that both our TAP and ADL greatly improve adversarial robustness. Moreover,
we provide additional comparison results on both image classification and semantic segmentation tasks.

Comparison of adversarial robustness. We also evaluate the robustness against adversarial attacks [17, 25]. We follow
the settings of RVT [ 18] to construct the adversarial examples with the number of steps ¢ = 5 and step size a = 0.5, namely
PGD-5. As shown in Table I, compared to the improvement against image corruptions, the proposed methods also obtain
comparable improvement against adversarial attacks.

Method \ ImageNet T ImageNet-C (mCE) | PGD-5 1

FAN-B-Hybrid [31] 83.9 46.1 30.5
+TAP 84.3 449 (-1.2) 31.4 (+0.9)
+ADL 84.0 44.4 (-1.7) 31.8 (+1.3)
+TAP & ADL 84.3 43.7 (-2.4) 32.2 (+1.7)

Table 1. Comparisons of adversarial robustness against PGD attacks on ImageNet. We demonstrate that both our TAP and ADL also obtain
promising improvement in terms of adversarial robustness.

More results for image classification. In this part, we provide more comparisons on diverse benchmarks. From Ta-
ble II, besides RVT and FAN, we additionally compare more convolutional models/methods [8, 20, 10, 15] and a variety of
transformer architectures [21, 3, 1, 14, 22, 12, 27]. We highlight that our models significantly outperform all the compared
methods in terms of both clean accuracy and robustness. To be specific, based on FAN-B-Hybrid, our model outperforms
a strong convolutional baseline ConvNeXt-B that contains more parameters by 0.5% in accuracy on ImageNet and 3.1% in
mCE on ImageNet-C. This phenomenon can also be observed when compared with a popular transformer model DeiT-B. Fur-
thermore, we also report the corruption error of each individual corruption type of ImageNet-C in Table III. Unsurprisingly,
our model equipped with TAP and ADL yields the lowest (best) corruption error on most corruption types.

Method #Params (M) | #FLOPs (G) | ImageNet T | ImageNet-C | ImageNet-P | | ImageNet-A 1 ImageNet-R 1
ResNet50 [8] 25.6 4.1 76.1 76.7 58.0 0.0 36.1
Inception v3 [20] 27.2 5.7 77.4 80.6 61.3 10.0 38.9
EWS [5] 25.6 4.1 71.3 58.7 30.9 59 48.5
DeepAugment [10] 25.6 4.1 75.8 60.6 32.1 3.9 46.7
ConvNeXt-B [15] 88.6 15.4 83.8 46.8 - 36.7 51.3
DeiT-B [21] 86.6 17.6 82.0 48.5 32.1 27.4 44.9
ConViT-B [3] 86.5 17.7 82.4 46.9 322 29.0 48.4
XCiT-S24 [1] 47.7 9.1 82.6 49.4 - 27.8 45.5
Swin-B [14] 87.8 15.4 83.4 54.4 327 358 46.6
PVT-Large [22] 61.4 9.8 81.7 59.8 39.3 26.6 427
PiT-B [12] 73.8 12.5 82.4 48.2 - 339 43.7
T2T-ViT_t-24 [27] 64.1 15.0 82.6 48.0 31.8 28.9 479
RSPC (FAN-B-Hybrid) [0] 50.4 17.7 84.2 44.5 30.0 41.1 -
RVT-B [18] 91.8 17.7 82.6 46.8 319 28.5 48.7

+ TAP 92.1 17.9 83.0 (+0.4) 45.5 (-1.3) 30.6 (-1.3) 30.0 (+1.5) 49.4 (+0.7)

+ ADL 91.8 17.7 82.6 (+0.0) 452 (-1.6) 30.2 (-1.7) 30.8 (+2.3) 49.8 (+1.1)

+ TAP & ADL 92.1 17.9 83.1 (+0.5) 44.7 (-2.1) 29.6 (-2.3) 32.7 (+4.2) 50.2 (+1.5)
FAN-B-Hybrid [31] 50.4 11.7 83.9 46.1 31.3 39.6 52.7

+ TAP 50.7 11.8 84.3 (+0.4) 449 (-1.2) 30.3 (-1.0) 41.0 (+1.4) 539 (+1.2)

+ ADL 50.4 11.7 84.0 (+0.1) 44.4 (-1.7) 29.8 (-1.5) 414 (+1.8) 54.2 (+1.5)

+ TAP & ADL 50.7 11.8 84.3 (+0.4) 43.7 (-2.4) 29.2 (-2.1) 42.3 (+2.7) 54.6 (+1.9)

Table II. Comparisons on ImageNet and diverse robustness benchmarks. We report the mean corruption error (mCE) on ImageNet-C and
mean flip rate (mFR) on ImageNet-P. For these metrics, lower is better. Moreover, we directly report the accuracy on ImageNet-A and
ImageNet-R. Based on the considered two baselines, our models consistently improve the accuracy and robustness on diverse benchmarks.



Model mCE | Noise | Blur | Weather | Digital |
Gaussian  Shot Impulse | Defocus Glass Motion Zoom | Snow Frost Fog Brightness | Contrast Elastic Pixelate JPEG
FAN-B-Hybrid [31] | 46.1 40 39 37 52 64 48 55 40 44 37 37 34 62 53 52
+TAP 449 36 36 34 53 65 46 55 40 42 36 37 33 63 49 49
+ADL 44.1 36 36 34 51 64 45 54 38 40 38 37 33 61 48 49
+TAP & ADL 43.7 34 34 32 52 62 45 54 38 40 35 36 33 63 47 50

Table III. Corruption error on ImageNet-C. Following [11], we compute the corruption error for each corruption type by dividing by
AlexNet’s error. The mean corruption error (mCE) is a simple average over the corruption errors on all corruption types. Note that, for
both corruption error and mCE, lower is better. Empirically, our TAP and ADL significantly reduce the corruption errors. More critically,
combining TAP and ADL together obtains the lowest errors on most corruption types, yielding the best mCE in practice.

Model Cityscapes Average mloU Blur Noise Digital ‘Weather
on Cityscapes-C | Motion Defoc  Glass Gauss | Gauss Impul Shot Speck | Bright Contr Satur JPEG | Snow Spatt Fog Frost
DeepLabv3+ (R50) [2] 76.6 36.8 58.5 56.6 47.2 57.7 6.5 72 10.0  31.1 58.2 547 413 274 120 420 559 228
DeepLabv3+ (R101) [2] 77.1 39.4 59.1 56.3 47.7 573 13.2 139 163 369 59.2 545 415 374 11.9 478 551 227
DeepLabv3+ (X65) [2] 78.4 42.7 63.9 59.1 52.8 59.2 15.0 106 198 424 65.9 59.1 46.1 314 193 507 63.6 238
DeepLabv3+ (X71) [2] 78.6 425 64.1 609 520 604 14.9 108 194 412 680 587 47.1 402 | 188 504 64.1 202
ICNet [28] 65.9 28.0 458 446 474 447 8.4 84 106 279 | 410 331 275 340 63 305 273 110
FCN8s [16] 66.7 27.4 427 3.1 370 341 6.7 5.7 78 249 533 390 360 212 | 113 316 376 197
DilatedNet [26] 68.6 30.3 44.4 363 325 384 15.6 140 184 327 527 326 381  29.1 125 323 347 192
PSPNet [29] 78.8 345 59.8 532 44.4 53.9 11.0 154 154 342 60.4 51.8 306 214 8.4 427 344 162
ConvNeXt-T [15] 79.0 54.4 64.1 61.4 49.1 62.1 349 31.8 388 56.7 76.7 68.1 76.0  51.1 250 587 742 351
SETR [30] 76.0 55.5 61.8 61.0 59.2 62.1 36.4 338 422 612 73.1 638  69.1 49.7 | 412  60.8 63.8 32.0
Swin-T [14] 78.1 47.5 62.1 61.0 48.7 62.2 22.1 248 251 422 75.8 62.1 757 337 199 569 721 300
Segformer-B0 [24] 76.2 489 59.3 589 510 591 25.1 266 304 507 733 663 719 312 | 221 529 653 312
Segformer-B1 [24] 78.4 52.6 63.8 635 520 298 | 233 354 562 763 708 747 361 562 | 283 60.5 705 363
Segformer-B2 [24] 81.0 55.8 68.1 676 588  68.1 238 231 272 470 799 762 787 462 | 349 648 760 42.1
Segformer-B5 [24] 82.4 65.8 69.1 686 641 698 | 578 634 523 728 81.0 777 80.1 588 | 40.7 684 785 499
FAN-B-Hybrid [31] 823 673 70.0 69.0 643 693 559 604 61.1 709 812 761 800 570 | 548 725 784 523
+TAP 82.7 69.2 (+1.9) 70.1 69.2 66.6 69.8 61.2 67.1 656 735 81.3 76.5 804 623 557 747 792 549
+ADL 824 69.4 (+2.1) 70.1 68.6 65.3 69.7 62.6 68.5 66.1 738 81.7 713 808 633 553 743 797 528
+TAP & ADL 829 69.7 (+2.4) 70.4 688 656 698 | 63.0 684 671 741 81.8 774 809 635 | 569 749 80.0 53.0

Table IV. Comparisons of mIoU on individual corruption type of Cityscapes-C based on FAN-B-Hybrid. We obtain the best results on most
of the corruption types when combining our TAP and ADL together.

. ACDC
Model Cityscapes Fog Night Rain Snow | Average
RefineNet [13] 73.6 464 290 52,6 433 43.7
DeepLabv2 [23] 71.4 335 30.1 445 402 38.0
DeepLabv3+ (R101) [2] 77.1 4577 250 500 420 41.6
DANet [4] 81.5 347 19.1 415 333 33.1
HRNetV2-W48 [19] 81.6 384 206 448 351 353
Segformer-B5 [24] 82.4 632 478 664 637 62.0
FAN-B-Hybrid [31] 82.2 640 459 67.8 645 60.6
FAN-B-Hybrid (TAP & ADL) 829 645 51.0 70.5 68.2 63.6

Table V. Comparisons of mloU on individual adverse conditions of ACDC based on FAN-B-Hybrid. When equipped with TAP and ADL,
we obtain the best results on all the conditions compared to the baseline FAN-B-Hybrid and existing approaches.

More results for semantic segmentation. For semantic segmentation, we provide more quantitative results and detailed
comparisons, including the results on individual corruption types of Cityscapes-C in Table IV and the results on individual
adverse conditions of ACDC in Table V. Unlike Table 4 in the main paper, we include more popular methods for comparisons
on Cityscapes-C. We demonstrate that our TAP and ADL greatly improve the mloU on Cityscapes-C by 1.9% and 2.1%,
respectively, along with improved mloU on the clean Cityscapes dataset. Moreover, our models outperform all the compared
methods and achieve the best tradeoff between clean performance and robustness. In addition, we also show the detailed
results on individual corruption types. As shown in Table IV, our best model yields the largest improvement mainly on
Noise corruptions by >3.2% in terms of mloU, while obtaining a relatively smaller improvement on blur corruptions. In
addition, using TAP alone performs better on some corruption types, including defocus blur, glass blur, and frost. When
combining TAP and ADL, we are able to obtain the best results on most of the corruption types. Similarly, we observe the
same phenomenon on the adverse conditions of ACDC, as shown in Table V. For example, when using TAP and ADL, our
model consistently obtains the best results on all the individual adverse conditions, yielding the best average results as well.
These results indicate that both the proposed TAP and ADL are general techniques that are able to improve the robustness on
diverse tasks and corruption types.



D. More Visualization Results

In this part, we provide additional visualization results of intermediate attention maps of vision transformers. We demon-
strate that the token overfocusing issue can be observed across different layers in a model, different architectures, and the
models on semantic segmentation tasks. Then, we show more visual comparisons of segmentation results.

Visualization of intermediate attention maps. In the main paper, we illustrate the overfocusing issue based on the
attention maps of the last layer. Indeed, this issue can be observed across most of the layers. As shown in Figure I, for the
baseline model, the overfocusing issue becomes more and more obvious from 7-th layer to the last layer. More critically, we
highlight that all the deep layers focus on the same set of important tokens. When facing image corruptions, e.g., Gaussian
noise, we observe a severe attention shift across all the intermediate layers, indicating that the standard self-attention is very
fragile. In contrast, our model adopts a diagonal attention pattern in all the layers and exhibits significantly better stability
against image corruptions. We hypothesize that the diagonal pattern plays an important role in stabilizing the attention since
we inherently encourage the tokens to preserve most of their own information when aggregating information from other
tokens. Although the information from other tokens is relatively weak in each layer, the model is able to gradually extract
discriminative features in the end by stacking multiple self-attention layers. We also highlight that the diagonal attention
pattern follows a similar fusion manner with the residual architecture [9], which preserves the original information using an
identity mapping and extracts new features in the residual branch.

Alleviating token overfocusing issue on top of diverse architectures. We have shown the effectiveness of our methods
in alleviating the token overfocusing issue based on FAN-B-Hybrid. Here, we additionally take another transformer RVT-B
to verify the generalization ability of our methods. From Figure II, we obtain several important observations. First, the token
overfocusing issue also exists in RVT-B and becomes much more serious than that in FAN-B-Hybrid (see the second column
of Figure II). To be specific, the model often relies on less than 5 tokens to compute the self-attention. Second, our TAP and
ADL exhibit consistent attention patterns between both RVT and FAN architectures. Clearly, TAP encourages more tokens to
take part in the attention mechanism and ADL adopts a diagonal attention pattern in which the attention diversity among rows
is high enough. When combing them together, the attention becomes much more stable against image corruptions, sharing a
similar observation with Figure III. These results verify our argument that the proposed methods are general techniques that
can be applied to diverse architectures.

Alleviating token overfocusing issue on semantic segmentation tasks. Besides image classification models, we addi-
tionally show the effectiveness of our methods in alleviating the overfocusing issue on semantic segmentation models. In
Figure IV, we take FAN-B-Hybrid as the backbone to build a segmentation model and show the attention maps of the last
layer. Note that the number of tokens in attention maps becomes much larger than that of image classification models due to
the extremely large resolution of input images, e.g., often with 2048x1024 in Cityscapes. Because of the increased number
of tokens, we observe a slightly different attention pattern in the baseline model such that more tokens are relied upon by
the attention mechanism. Nevertheless, the overfocusing issue is still very obvious and the vulnerability of attention against
common corruptions can also be observed. When applying our TAP and/or ADL to the segmentation model, we observe a
similar attention pattern to that on image classification models shown in Figure III. These results indicate that our method
can generalize well to semantic segmentation tasks.

More visual comparisons of semantic segmentation. In the main paper, we have shown some examples to demonstrate
the superiority of our methods in improving the robustness of semantic segmentation models. Here, we additionally provide
the visualization results of more examples. To be specific, we show more visualization results on ACDC and Cityscapes-C in
Figure V and Figure VI, respectively. In Figure V, we study the robustness of segmentation models against all four adverse
conditions in ACDC dataset, including night, fog, rain, and snow. For clarity, we use the red box to highlight the major
differences between different segmentation masks. As for the night example (first row), the baseline model cannot detect
the car on the left under the insufficient lighting condition, while our model is still able to detect the car. This phenomenon
can be also observed in the fog weather in the second example. In the third and fourth examples, we show that the rain and
snow conditions often cause misclassification of the road part. We highlight that road detection plays in important role in
autonomous driving scenarios and the robustness against adverse weather conditions becomes critical. Moreover, we also
compare the segmentation results against diverse common corruptions in Cityscapes-C. In Figure VI, we further investigate
the robustness against common corrutpions. Besides Gaussian noise that we considered in previous experiments, we also
show the visualization results on top of other corruptions, including spatter, pixelated, impulse noise, and defocus blur. As
for the first two examples in Figure VI, the baseline model cannot accurately detect the bike regardless of whether there is a
person on it. In the last two examples, when facing noise and blur, the baseline model cannot detect the whole body of the
person, while our model accurately detects the person. Overall, these results demonstrate the effectiveness of the proposed
methods in improving the robustness of semantic segmentation models.
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Figure I. Attention maps of intermediate layers based on FAN-B-Hybrid. We demonstrate that the token overfocusing issue can be observed
in most layers and becomes gradually more serious with the increase of depth. When facing common corruptions, e.g., Gaussian noise,
the attention mechanism becomes extremely fragile by focusing on entirely different important tokens. By contrast, our model follows a
similar attention pattern (diagonal) across layers and exhibits better stability against corruptions.
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Figure II. Attention maps of the last layer based on RVT-B. Compared with FAN-B-Hybrid, the overfocusing issue becomes much more
serious in RVT-B since the attention relies on fewer important tokens, e.g., often less than 5 tokens. Nevertheless, our TAP and ADL exhibit
a similar attention pattern to that on FAN-B-Hybrid, indicating that the proposed methods can generalize well to diverse architectures.
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Figure III. Attention maps of the last layer

based on FAN-B-Hybrid. We demonstrate that the baseline model tends to rely on very

few tokens in the attention mechanism. By contrast, combining both our TAP and ADL obtains more balanced attention across tokens
(columns) and diverse attention across rows. More importantly, the attention of our model is very stable against common corruptions.
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Figure IV. Attention maps of the last layer in the segmentation model based on FAN-B-Hybrid backbone. We show that the token
overfocusing issue also exists in segmentation models and the attention mechanism is very fragile to image corruptions. By contrast, our
TAP and ADL obtains consistent attention pattern for both image classification and semantic segmentation models. These results indicate
the generalization ability of our approaches to the semantic segmentation tasks.



FAN-B-Hybrid FAN-B-Hybrid (TAP & ADL) Ground Truth

Figure V. Visual comparisons of segmentation results on ACDC. When facing adverse conditions, the baseline FAN-B-Hybrid model often
fails to detect cars (in the first three examples) or roads (in the last two examples). By contrast, our model is much more robust against
these adverse conditions than the baseline model.

Image FAN-B-Hybrid FAN-B-Hybrid (TAP & ADL) Ground Truth

Defocus blurimage in Cityscapes-C

Figure VI. Visual comparisons of segmentation results on Cityscapes-C. When facing image corruptions, the baseline FAN-B-Hybrid
model cannot detect the bike (in the first two exampls) and/or the whole body of a person (in the last two examples). By contrast, our
model is much more robust against these corruptions.
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