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1. Implementation details

1.1. Feature visualization network

We propose a feature restoration paradigm to restore
anomaly-free features from the anomalous features, and de-
tect anomalies in terms of the cosine distance between the
pre-trained features of an inference image and the corre-
sponding restored anomaly-free features. The restored fea-
tures tend to be close to the input image feature for the
normal regions and depart on anomalies. In order to ex-
plicitly demonstrate the effectiveness of our method, we vi-
sualize the restored features using a visualization network
[10], which is trained on normal and anomaly samples to re-
construct images from the pre-trained embedding features.
The visualization network follows a reversed architecture
of WideResNet [11], and the down-sampling in the original
network is replaced by up-sampling. Targeting high-fidelity
visualization, we use MSE loss to train the restoration net-
works.

2. MVTec LOCO AD dataset

MVTec LOCO AD dataset [1] is proposed to cover rep-
resentative examples of structural and logical anomalies in
industrial inspection scenarios. Structural anomalies appear
as scratches, dents, or contamination in manufactured prod-
ucts, while logical anomalies are defined by violating under-
lying logical constraints, e.g. an allowed object appears in
an invalid location or a required object does not exist at all.
The dataset consists of five sub-datasets, including break-
fast box, pushpins, splice connectors, screw bag, and juice
bottle.

*Equal contribution.
†Corresponding author.
‡Work done during an internship at Microsoft Research Asia.

All anomalies in the dataset are categorized as structural
or logical anomalies, which enable independent evaluation
on the anomaly detection performance of each type. Pre-
vious works predominantly focus on the detection of struc-
tural anomalies, while the proposed THFR network is de-
veloped for the detection of structural and logical anoma-
lies.

3. More ablation results
3.1. Compression level

In our experiments on LOCO, we investigated the ef-
fect of varying channel size of the bottleneck, which cor-
responds to the compression level of the bottleneck. As
shown in Figure 1, we observe that the localization accu-
racy increases with the channel size during the first half,
indicating that a higher preservation of information could
lead to better restoration quality after passing through the
bottleneck. However, beyond a certain point, increasing the
channel size no longer improves performance. When the
bottleneck is too loose, it is unable to effectively filtered
out anomaly features by compression, leading to decrease
in restoration quality and accuracy. Based on the observa-
tion, we set channel size to 2048 in our bottleneck design,
to find a balance between preserving sufficient information
while still accomplishing compression.

3.2. Template bank subsampling

Since the template feature is retrieved using image-level
nearest neighbor search, reducing template bank size by
subsampling will inevitably lower the feature similarity be-
tween the inference image and the selected template. To
investigate the impact of template bank subsampling on
template retrieval and anomaly detection performance, we
evaluate the anomaly localization accuracy and average fea-
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Figure 1. Anomaly localization accuracy of bottleneck compres-
sion with different channel sizes. We examined the impact of mod-
ifying the channel size of the bottleneck, which correlates to the
compression level of the bottleneck.
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Figure 2. Anomaly localization accuracy and average feature simi-
larity vary with different template subsampling ratios. Our method
is robust to variations in feature similarity between the input fea-
ture and the template feature.

ture similarity between the inference image and the corre-
sponding template at different subsampling ratios on two
datasets. The results are shown in figure 2. The average
feature similarity of LOCO dataset is lower than that of AD
dataset, where samples are better aligned. As a result, pre-
vious works have demonstrated good performance on the
AD dataset but unsatisfactory performance on the LOCO
dataset. We leverage the relationship between the input and
the template to guide the restoration process, which makes
our method less sensitive to the feature similarity variation
between the input and the template. When we decrease the
number of templates, the average similarity also decreased.
However, the performance remained consistent until sub-
sampling ratio drops below 5%, and even so, the drop in
performance is very limited.

3.3. Restored feature visualization

To explicitly demonstrate the effectiveness of our net-
work design, we employ a visualization network to visu-
alize the restored features using various restoration net-
works on LOCO and AD datasets, and more visualization
results are provided in figure 3. We compare the restored
features of GBN-only without compensation, LBN-only

without compensation, G-L bottleneck without compensa-
tion and our template-guided hierarchical feature restora-
tion (THFR) framework.

The GBN-only network is proved to be effective in filter-
ing out anomalies, like missing juice bottle labels and mis-
placement of transistors. However, it could not restore the
details properly, such as missing textures on hazelnuts and
blurry wires in cables. The LBN-only network could only
partially remove the anomalies, like the orange peel in the
breakfast box and the crack on hazelnut, but it is more effi-
cient in restoring the details. By combining these two net-
works, G-L bottleneck may introduce anomalous features,
such as the color on the background of the juice bottle and
deformed transistors. With template-guided compensation,
THFR restores anomaly-free features. Most of anomalies
are removed in the visualization images of the restored fea-
tures, which further benefits the anomaly detection perfor-
mance.

4. More experimental results
4.1. MVTec LOCO AD

We provide a detailed comparison of structural and log-
ical anomalies of MVTec LOCO AD dataset [1] in Table 1
and Table 2. We can observe that most existing methods
focus on the detection of structural anomalies and achieve
satisfactory detection and localization results on structural
anomalies. But these methods cannot handle the logical
anomalies determined by various complicated logical con-
straints. Our method introduces a hierarchical structure to
correct the semantic-level anomalies and local anomalies at
the same time. As a result, THFR outperforms the other
works by a remarkable margin in terms of the mean accu-
racy of detection and localization. We also show visualiza-
tion results of anomaly detection on all categories in MVTec
LOCO AD [1] (seeing Figures 4 to 8), including breakfast
box, screw bag, pushpins, splicing connectors, and juice
bottle.

4.2. MVTec AD

We provide a detailed comparison on all MVTec AD cat-
egories [2] in Tables 3 to 5. For overall categories, we re-
ceive comparable results with the other advanced methods.
Our method could achieve high accuracy on both image-
level detection and pixel-level localization at the same time.
Moreover, we show the visualization results of anomaly de-
tection on MVTec AD [2] in Figures 9 and 10.

5. Limitations and discussion
Our method has two potential limitations. Firstly, our

network employs a fixed ImageNet [7] pre-trained classifi-
cation model to extract features for effective feature rep-
resentation. However, the feature representation that is



Table 1. Pixel-level anomaly localization accuracy on MVTec
LOCO AD dataset (sPRO) [1]. Best and second-best scores are
bolded and underlined.

Method Structural anomalies Logical anomalies Mean
S-T [3] 75.6 49.7 62.6
DRAEM [12] 74.4 43.7 59.1
CFLOW [8] 70.9 56.7 63.8
RD4AD [6] 76.0 50.9 63.5
PatchCore [9] 74.0 55.4 64.7
GCAD [1] 69.2 71.1 70.1
THFR (ours) 75.1 73.0 74.1

Table 2. Image-level anomaly detection accuracy on MVTec
LOCO AD dataset (AUROC) [1]. Best and second best scores
are bolded and underlined.

Method Structural anomalies Logical anomalies Mean
S-T [3] 88.3 66.4 77.3
DRAEM [12] 88.4 71.9 80.1
CFLOW [8] 87.3 74.4 80.8
RD4AD [6] 87.2 72.2 79.7
PatchCore [9] 87.3 74.7 81.0
GCAD [1] 80.6 86.0 83.3
THFR (ours) 86.7 85.2 86.0

friendly to classification may lack discriminative low-level
features, and therefore make it insensitive to the subtle
anomalies, like the subtle color differences between banana
juice and orange juice in the juice bottle category. It is pos-
sible for the pre-trained models obtained by self-supervised
learning to generate feature representation that covers both
high-level and low-level features, and we plan to employ it
in our future work.

Secondly, we leverage the relationship between the input
feature and the template feature to guide the anomaly-free
feature restoration process and it could resolve misalign-
ment between the input feature and the template feature.
However, when the normal pattern is defined based on the
specific rules on object numbers, like the screw bag cat-
egory in LOCO dataset. It is difficult for relation-based
compensation to restore the correct number of objects. To
address this issue, we plan to investigate adaptive template
composition methods, which could take advantage of lo-
cal template prior and global semantic relation prior for
anomaly-free feature restoration in the future.

6. Evaluation Metrics
6.1. MVTec AD

For simple per-pixel measures, such as AUROC, a sin-
gle large region segmented correctly can make up for many
incorrectly segmented small ones. Therefore, we compute
the per-region-overlap (PRO) [2] as an additional anomaly
localization metric, which weights ground-truth regions of
different sizes equally. While computing the PRO met-
ric, anomaly scores are first thresholded to make a binary

decision for each pixel whether an anomaly is present or
not. For each connected component within the ground truth,
the relative overlap with the thresholded anomaly region is
computed. Following the protocol mentioned in [3], we
evaluate the PRO value for a large number of increasing
thresholds until an average per-pixel false-positive rate of
30% for the entire dataset is reached, and use the area under
the PRO curve as a measure of anomaly localization perfor-
mance.

6.2. MVTec LOCO AD

Unlike structural anomalies, logical anomalies usually
have multiple correct predicted anomaly maps, and the
union of all areas that could potentially be the cause for
the anomaly is labeled as the final anomaly area in MVTec
LOCO AD. However, a method is not necessarily required
to predict the whole ground truth area. To reflect this,
Bergmann et al. [1] propose a suitable performance met-
ric that saturates once the overlap with the ground truth ex-
ceeds a certain saturation threshold. The metric is called
saturated-per-region-overlaps (sPRO) that generalized from
the PRO metric as follows:

sPRO(M) =
1

m

m∑
i=1

min(
|Ai ∩M |

si
, 1), (1)

where the {Ai, ..., Am} are the set of all defect ground truth
regions, {si, ..., sm} are a set of corresponding saturation
thresholds and the M is the predicted anomaly map. An il-
lustrative example of the sPRO metric with a single ground-
truth region is provided in Figure 6. In the fourth row, an
additional cable appears between two connectors. The an-
notated area A covers both the cables and the corresponding
saturation threshold s is set to the area of one cable, i.e., half
of the annotated region. Hence, all predictions M for which
the overlap with A exceeds s fully solve the segmentation
task, i.e., sPRO(M) = 1. Following [1], we evaluate the
sPRO value for a large number of increasing thresholds until
an average per-pixel false-positive rate of 5% for the entire
dataset is reached, and use the area under the sPRO curve
as a measure of anomaly localization performance.
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Table 3. Image-level anomaly localization accuracy on MVTec AD (AUROC) [2]. Best and second best scores are bolded and underlined.
* To ensure fair comparison with previous studies, CFLOW [8] is evaluated using input images with resolution of 256x256 pixels.

Method \Dataset Bottle Cable Capsule Carpet Grid Hazeln. Leather Metal Pill Screw Tile Toothb. Trans. Wood Zipper Mean
SPADE [4] - - - - - - - - - - - - - - - 85.5
PaDiM [5] - - - - - - - - - - - - - - - 95.3
DRAEM [12] 99.2 91.8 98.5 97.0 99.9 100 100 98.7 98.9 93.9 99.6 100 93.1 99.1 100 98.0
CFLOW [8] * 100 97.6 97.7 99.2 91.5 100 100 99.1 97.1 83.2 100 91.9 96.1 99.0 99.4 96.8
RD4AD [6] 100 95.0 96.3 98.9 100 99.9 100 100 96.6 97.0 99.3 99.5 96.7 99.2 98.5 98.5
PatchCore [9] 100 99.5 98.1 98.7 98.2 100 100 100 96.6 98.1 98.7 100 100 99.2 99.4 99.1
THFR (ours) 100 99.2 97.5 99.8 100 100 100 100 97.8 97.1 99.3 100 99.7 99.2 97.7 99.2

Table 4. Pixel-level anomaly localization accuracy on MVTec AD (AUROC) [2]. Best and second best scores are bolded and underlined.
* To ensure fair comparison with previous studies, CFLOW [8] is evaluated using input images with resolution of 256x256 pixels.

Method \Dataset Bottle Cable Capsule Carpet Grid Hazeln. Leather Metal Pill Screw Tile Toothb. Trans. Wood Zipper Mean
SPADE [4] 98.4 97.2 99.0 97.5 93.7 99.1 97.6 98.1 96.5 98.9 87.4 97.9 94.1 88.5 96.5 96.0
PaDiM [5] 98.3 96.7 98.5 99.1 97.3 98.2 99.2 97.2 95.7 98.5 94.1 98.8 97.5 94.9 98.5 97.5
DRAEM [12] 99.1 94.7 94.3 95.5 99.7 99.7 98.6 99.5 97.6 97.6 99.2 98.1 90.9 96.4 98.8 97.3
CFLOW [8] * 98.8 97.6 97.7 99.2 96.9 98.8 99.6 98.6 98.9 98.1 97.7 98.6 93.9 94.5 98.4 97.9
RD4AD [6] 98.7 97.4 98.7 98.9 99.3 98.9 99.4 97.3 98.2 99.6 95.6 99.1 92.5 95.3 98.2 97.8
PatchCore [9] 98.6 98.4 98.8 99.0 98.7 98.7 99.3 98.4 97.4 99.4 95.6 98.7 96.3 95.0 98.8 98.1
THFR (ours) 98.9 98.5 98.7 99.2 99.3 99.2 99.4 97.4 98.0 99.5 95.5 99.2 95.9 95.3 98.7 98.2

Table 5. Pixel-level anomaly localization accuracy on MVTec AD (AUPRO) [2]. Best and second-best scores are bolded and underlined. *
To ensure fair comparison with previous studies, CFLOW [8] is evaluated using input images with resolution of 256x256 pixels.

Method \Dataset Bottle Cable Capsule Carpet Grid Hazeln. Leather Metal Pill Screw Tile Toothb. Trans. Wood Zipper Mean
SPADE [4] 95.5 90.9 93.7 94.7 86.7 95.4 97.2 94.4 94.6 96.0 75.9 93.5 87.4 87.4 92.6 91.7
PaDiM [5] 94.8 88.8 93.5 96.2 94.6 92.6 97.8 85.6 92.7 94.4 86.0 93.1 84.5 91.1 95.9 92.1
S-T [3] 93.1 81.8 96.8 87.9 95.2 96.5 94.5 94.2 96.1 94.2 94.6 93.3 66.6 91.1 95.1 91.4
CFLOW [8] * 93.3 93.5 93.4 96.3 90.9 96.7 98.9 91.7 95.4 93.1 91.3 87.4 84.1 91.4 93.4 92.7
RD4AD [6] 96.6 91.0 95.8 97.0 97.6 95.5 99.1 92.3 96.4 98.2 90.6 94.5 78.0 90.9 95.4 93.9
PatchCore [9] 96.2 92.5 95.5 96.6 96.0 93.8 98.9 91.4 93.2 97.9 87.3 91.5 83.7 89.4 97.1 93.4
THFR (ours) 97.2 94.8 95.9 97.7 97.7 96.2 99.2 90.5 96.4 98.2 90.8 94.7 85.9 93.3 96.6 95.0

[3] Paul Bergmann, Michael Fauser, David Sattlegger, and
Carsten Steger. Uninformed students: Student-teacher
anomaly detection with discriminative latent embeddings. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020. 3, 4

[4] Niv Cohen and Yedid Hoshen. Sub-image anomaly detec-
tion with deep pyramid correspondences. arXiv preprint
arXiv:2005.02357, 2020. 4

[5] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and
Romaric Audigier. Padim: A patch distribution model-
ing framework for anomaly detection and localization. In
Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Gio-
vanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair
Escalante, and Roberto Vezzani, editors, Pattern Recogni-
tion. ICPR International Workshops and Challenges, pages
475–489, Cham, 2021. Springer International Publishing. 4

[6] Hanqiu Deng and Xingyu Li. Anomaly detection via reverse
distillation from one-class embedding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9737–9746, June 2022. 3, 4

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 2

[8] Denis Gudovskiy, Shun Ishizaka, and Kazuki Kozuka.
Cflow-ad: Real-time unsupervised anomaly detection with

localization via conditional normalizing flows. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 98–107, January 2022. 3, 4

[9] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard
Schölkopf, Thomas Brox, and Peter Gehler. Towards to-
tal recall in industrial anomaly detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14318–14328, June 2022. 3, 4

[10] Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu,
Yu Zheng, and Xinyi Le. A unified model for multi-class
anomaly detection. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022. 1

[11] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In Edwin R. Hancock Richard C. Wilson and William
A. P. Smith, editors, Proceedings of the British Machine Vi-
sion Conference (BMVC), pages 87.1–87.12. BMVA Press,
September 2016. 1

[12] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Draem -
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Anomaly LBN THFRRecon GTNormal GBN G-L bottleneck Anomaly map

Figure 3. Visualization of restored features from different restoration networks on MVTec LOCO AD [1] and MVTec AD [2]. From
left to right: normal image, anomaly image, reconstructed images from the pre-trained embedding features (Recon), restored features
of GBN-only without compensation, LBN-only without compensation, G-L bottleneck without compensation and our template-guided
hierarchical feature restoration (THFR) framework, anomaly map, and ground truth. The visualization results show how restoration
networks progressively achieve anomaly-free restoration with G-L bottleneck and template-guided hierarchical feature compensation.
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Figure 4. Qualitative results of breakfast box. Normal: breakfast box contains exactly two tangerines and one nectarine which are always
located on the left-hand side of the box. Furthermore, the ratio and relative position of the cereals and the mix of banana chips and almonds
on the right-hand side are fixed. We show results on typical anomalies, including arrangement changes, missing banana chips and almonds,
missing orange, and additional objects.
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Figure 5. Qualitative results of pushpins. Normal: each compartment of the box contains exactly one pushpin. We show results on typical
anomalies, including one additional pushpin, missing pushpin, missing separator, and additional object.
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Figure 6. Qualitative results of splicing connectors. Normal: exactly two splicing connectors with the same number of cable clamps are
linked by exactly one cable. In addition, the number of clamps has a one-to-one correspondence to the color of the cable, and the cable has
to terminate in the same relative position on its two ends such that the whole construction exhibits mirror symmetry. We show results on
typical anomalies, including cable broken, missing cable, missing connectors, additional cable, wrong cable color, and connector broken.
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Figure 7. Qualitative results of juice bottle. Normal: each juice bottle is filled with one of three differently colored liquids and carries
exactly two labels. The first label is attached to the center of the bottle and displays an icon that determines the type of liquid. The second
is attached to the lower part of the bottle with the text “100% Juice” written on it. The fill level is the same for each bottle. We show results
on typical anomalies, including missing all labels, missing bottom label, misplaced top label, misplaced bottom label, label location wrong
and label broken. The failure cases of juice color are analyzed in Section 5 of the paper.
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Figure 8. Qualitative results of screw bag. Normal: a screw bag contains exactly two washers, two nuts, one long screw, and one short
screw. We show results on typical anomalies, including bag broken, additional object, and one additional short screw. The existing methods
failed to achieve satisfactory results due to the interference caused by the reflection of screw bags.
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Figure 9. Qualitative results of object categories in MVTec AD [2].
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Figure 10. Qualitative results of texture categories in MVTec AD [2].


