
Appendix

A. Implementation Details

A.1. �align Architecture

We use a small U-Net architecture [66] to represent �align
consisting of four downscaling fully convolutional blocks
and four upscaling fully convolutional blocks. Output of
downscaling blocks is concatenated to the upscaling blocks,
as is typical in U-Nets. The size and parameter details of
each of the blocks is provided in Table 6.

Output of the final layer has two channels predicting the
x and y canonical space coordinates for each pixel. The
canonical grid is a learned embedding of dimension 256⇥
256⇥ 4. We fixed the learning rate for the network to 0.001
and train the entire network end to end for 20, 000 iterations
with a batch size of 20 on a single GPU.

Table 6: U-Net architecture for �align - It is a fully convolutional
architecture, consisting of an Input block, Output block, four Up
blocks, and four Down blocks. Each block consists of Up, Down,
and DoubleConv Layers as shown below. Each DoubleConv, Up,
and Down blocks is parameterized by number of input and out-
put channels i.e., (Cin, Cout). Each Conv2D is represented by
(Cin, Cout, kernel, stride, pad). BN stands for batch normalization
layer and has Cout parameters. ReLU are Rectified Linear Units
without any parameters.

Blocks Layers Output Size

Input DoubleConv (3, 32) 32⇥ 128⇥ 128
Down-1 Down (32, 64) 64⇥ 64⇥ 64
Down-2 Down (64, 128) 128⇥ 32⇥ 32
Down-3 Down (128, 256) 256⇥ 16⇥ 16
Down-4 Down (256, 512) 512⇥ 8⇥ 8
Up-1 Up (512, 128) 256⇥ 16⇥ 16
Up-2 Up (256, 64) 128⇥ 32⇥ 32
Up-3 Up (128, 32) 64⇥ 64⇥ 64
Up-4 Up (64, 32) 32⇥ 128⇥ 128
Output DoubleConv (32, 4) 4⇥ 256⇥ 256

DoubleConv

Conv2D(Cin, Cout, 3, 1, 1)
BN(Cout)
ReLU
Conv2D(Cin, Cout, 3, 1, 1)
BN(Cout)
ReLU

Down MaxPool2D(2)
DoubleConv(Cin, Cout)

Up BilinearUpsample(2)
DoubleConv(Cin, Cout)

A.2. Canonical grid G

The canonical grid G consists of a simple 256⇥ 256⇥ 4
feature grid which is learned during the training with the
same learning rate and optimizer as the alignment network
�align. Each location in G stores an (r, g, b,↵) value which

corresponds to colors (r, g, b) and a probability ↵ that this
location corresponds to a foreground pixel in the image.

A.3. Loss terms

Recall that our overall objective function comprises 5 dif-
ferent loss terms of which LKP, LEqui, and LTV are applied
to canonical space coordinates C and update only the param-
eters of alignment network �align (and not the canonical grid
G). LRecon and LParts can backpropagate gradients to both
the alignment network and the canonical grid. In all our ex-
periments, on all 4 datasets and their respective categories,
we use the same set of weight coefficients (except for the
ablation study in Section 4, where we make the coefficients
zero one at a time). We set of the coefficients for different
loss terms as following: �KP = 10, �Equi = 1, �TV = 9000,
�Recon = 1, and �Parts = 10. We observed that our frame-
work is robust to the choice of hyperparameters. We can fur-
ther increase the PCK performance by setting per-category
hyperparameters, however, per-category (or per-collection)
tuning is not ideal for scaling the model to a large number of
image collections. Hence, we choose to report all our num-
bers with a fixed set of hyperparameters.

A.4. Choice of SSL for pseudo-correspondences.

In our experiments, we obtain initial set of pseudo-
correspondences by finding mutual nearest neighbors from
frozen DINO (ViT-S/8) network. Note that DINO is not
trained or fine-tuned in our experiments. Our alignment net-
work �align, which is much smaller than DINO, is trained
from scratch. This is also in contrast with other weakly su-
pervised techniques such as PMD which uses ResNet-101
/ VGG-16 (> 40M params). We observe that performance
of our framework can be improved further by using better
pseudo-correspondences. Tab. 7 shows ASIC results when
obtaining pseudo-correspondences from 3 different ViT ar-
chitectures.

Table 7: Pseudo-correspondences Ablation on CUB-001

Architecture # params ImageNet Top-1 DVD ASIC (ours)
(Accuracy) PCK@0.1 PCK@0.1

ViT-S/16 21M 77.0 59.8 63.7

ViT-B/8 85M 80.1 66.4 74.9

ViT-S/8 (paper) 21M 79.7 66.8 71.8

B. Visualizing the Canonical Space

Recall that in Section 4 of the paper, we showed the
canonical space mapping for various datasets learned by our
model. Here we provide further details of the canonical
space mapping. Specifically we first show the region in 2D
space where each point in the image is getting mapped in
Appendix B.1. Next we show the RGB grid that is learned
by our model.



Figure 7: Colormap for canonical space visualization. We use the
colormap shown in the top row to represent the canonical space. Based on
the canonical space coordinates predicted by our model for each pixel, we
copy (or more precisely splat) the colors from the canonical space colormap
to the original image. Each row shows the mapping learned by the model
for different datasets.

B.1. With colormap

First, we reproduce the results from Section 4 here, along
with the colormap of canonical space used to visualize them
in Figure 7. Note that we train a different model for each
dataset. The figure shows that the semantically similar parts
of objects get mapped to nearby location in the canonical
space. Our model is able to learn a smooth mapping for each
object.

B.2. With learned RGB Grid

Our method also learns an RGB grid. Figure 8 shows
the grid learned for 4 different datasets. We observe that
while our grid is not interpretable, there are distinct patterns
that emerge for each dataset. Specifically, one can observe
wheel-like shapes in the bicycle grid, and a cube in the train
canonical grid. We attribute the weak interpretability of the
learned grid to the large variability in the challenging in-the-
wild images, where images may consist of different instances
of an object category in very different poses, articulations,
shapes, textures, background, and lighting. The collections
we used are also very small (5-25 images). Further while our
alignment network ensures that the pseudo-correspondences
across images land at the same location in the canonical
space, nearby points within the same image can still map to
far away locations in the canonical space. Making the grid

more interpretable could be useful for better understanding
of the model’s capabilities and limitations. For instance, in
the case of GANgealing [61], training a GAN on a large
dataset of cats (⇠1.5M images), they are able to learn a
canonical atlas which looks like face of a cat. This allows
them to use canonical atlas as the template for image editing
and edit propagation templates (although, a limitation of this
approach is that it doesn’t allow editing any parts other than
the face of a cat).

Bi
cy

cl
e

Co
w

H
or

se
Tr

ai
n

Input Images Mean Image Learned Grid

Figure 8: Sample images from the dataset in the left four columns,
followed by the mean image of the dataset. The last column shows
the joint canonical grid learned by the model.

C. Results on different k-values and all

datasets for k-CyPCK

We share the results for of k 2 {2, 3, 4} and plot
k-CyPCK for all the datasets (with groundtruth keypoint an-
notations) we considered in our experiments. Figures 9 to 11
show the comparison between our method and DVD. Note
that DVD is also referred to as DINO + NN (where NN
stands for nearest neighbors) in the main paper to clarify the
strategy used to find the correspondences. Our method con-
sistently outperforms the baseline, at both small and large
values of ↵bbox (which corresponds to the coarse and fine
precision or accuracy of the transfer).



Figure 9: 2-CyPCK for three CUB-200 categories and 18 SPair-71k categories (test split)

Figure 10: 3-CyPCK for three CUB-200 categories and 18 SPair-71k categories (test split)

Figure 11: 4-CyPCK for three CUB-200 categories and 18 SPair-71k categories (test split)


