
Supplemental Material for "Generalized Sum Pooling for Metric Learning"

1. Extended Empirical Study for DML

In the following sections, we explain our empirical
study in detail and provide additional experiments on
effect of hyperparameters as well as evaluation with the
conventional experimental settings.

Reproducibility

We provide full detail of our experimental setup and
recapitulate the implementation details for the sake
of complete transparency and reproducibility. Code is
available at: GSP-DML Framework.

1.1. Conventional Evaluation

We additionally follow the relatively old-fashioned
conventional procedure [28] for the evaluation of our
method. We use BN-Inception [11] and ResNet50 [10]
architectures as the backbones. We obtain 512D (BN-
Inception and ResNet50) embeddings through linear
transformation after global pooling layer. Aligned with
the recent approaches [13,35,37,40], we use global max
pooling as well as global average pooling. The rest of
the settings are disclosed in Sec. 1.6.

We evaluate our method with XBM. We provide
R@1 results in Tab. 1 for the comparison with SOTA.
In our evaluations, we also provide MAP@R scores in
parenthesis under R@1 scores. We also provide baseline
XBM evaluation in our framework. The results are
mostly consistent with the ones reported in the original

paper [40] except for CUB and Cars datasets. In XBM
[40], the authors use proxy-based trainable memory for
CUB and Cars datasets. On the other hand, we use the
official implementation provided by the authors, which
does not include such proxy-based extensions.

We observe that our method improves XBM and
XBM+GSP reaches SOTA performance in large scale
datasets. With that being said, the improvement mar-
gins are less substantial than the ones in fair evaluation.
Such a result is expected since training is terminated by
early-stopping which is a common practice to regularize
the generalization of training [5, 18]. In conventional
evaluation, early-stopping is achieved by monitoring the
test data performance, enabling good generalization to
test data. Therefore, observing less improvement in gen-
eralization with GSP is something we expect owing to
generalization boost that test data based early-stopping
already provides.

We also observe that in a few cases, the R@1 per-
formance of GSP is slightly worse than the baseline.
Nevertheless, once we compare the MAP@R perfor-
mances, GSP consistently brings improvement with no
exception. We should recapitulate that R@1 is a my-
opic metric to assess the quality of the embedding space
geometry [24] and hence, pushing R@1 does not neces-
sarily reflect the true order of the improvements that
the methods bring.

As we observe from MAP@R comparisons in Table 2
(main paper), the methods sharing similar R@1 (i.e.,

Table 1: Comparison with the existing methods for the retrieval task in conventional experimental settings with
BN-Inception and ResNet50 backbones where superscripts denote embedding size. Red: the best. Blue: the second
best. Bold: previous SOTA. ‡Results obtained from [33].

(a)

Backbone → BN-Inception-512D

Dataset → CUB Cars196 SOP In-shop

Method ↓ R@1 R@1 R@1 R@1

C1+XBM [40] 65.80 82.00 79.50 89.90
ProxyAnchor [13] 68.40 86.10 79.10 91.50
DiVA [22] 66.80 84.10 78.10 -
ProxyFewer [45] 66.60 85.50 78.00 -
Margin+S2SD [30] 68.50 87.30 79.30 -

C1+XBM 64.32
(23.59)

77.63
(21.67)

79.29
(52.59)

90.16
(61.39)

C1+XBM+GSP 64.99
(25.35)

79.07
(22.51)

79.59
(52.70)

90.92
(63.25)

(b)

Backbone → ResNet50

Dataset → CUB Cars196 SOP In-shop

Method ↓ R@1 R@1 R@1 R@1

C1+XBM128 [40] - - 80.60 91.30
ProxyAnchor512 [13] 69.70 87.70 80.00‡ 92.10‡
DiVA512 [22] 69.20 87.60 79.60 -
ProxyNCA++512 [35] 66.30 85.40 80.20 88.60
Margin+S2SD512 [30] 69.00 89.50 81.20 -
LIBC512 [33] 70.30 88.10 81.40 92.80
MS+Metrix512 [37] 71.40 89.60 81.00 92.20
PAnchor+DIML128 [44] 66.46

(25.58)
86.13
(28.11)

79.22
(43.04)

-

LIBC+GSP512 70.70 88.43 81.65 93.30
C1+XBM512 66.68

(25.38)
82.83
(25.34)

81.44
(55.66)

91.56
(64.00)

C1+XBM+GSP512 66.63
(25.51)

82.60
(25.76)

81.54
(55.91)

91.75
(64.43)
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P@1) performances can differ in MAP@R performance
relatively more significantly. In that manner, we firmly
believe that comparing MAP@R performances instead
of R@1 technically sounds more in showing the improve-
ments of our method.

Finally, we also apply our method with LIBC [33]
to further show wide applicability of our method. We
use the official implementation of LIBC and follow their
default experimental settings. The evaluations on 4
benchmarks show that GSP improve LIBC by ≈ 0.5pp
R@1. To offer a complete outlook on the conventional
evaluation, we have included the recall at K (R@K)
scores in Table 2 as well.

Table 2: R@K performances using 512D embeddings
from LIBC [33] and XBM [40] with ResNet50 backbone

Dataset→ CUB Cars196

Method↓ R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

LIBC+GSP 70.70 80.72 88.18 92.64 88.43 93.03 95.78 97.69
XBM+GSP 66.63 77.43 85.26 91.02 82.60 89.04 92.67 95.62

Dataset→ SOP In-shop

Method↓ R@1 R@10 R@50 R@100 R@1 R@10 R@20 R@40

LIBC+GSP 81.65 91.37 94.85 96.00 93.30 98.54 98.96 99.25
XBM+GSP 81.54 91.84 95.18 96.29 91.75 97.83 98.52 99.01

1.2. Application of GSP to Other Problems

GSP is applicable to any problem and architecture
with a pooling layer. We believe GSP is particularly
relevant to the problem of metric learning due to the
geometry it enforces. Our pooling method enhances
local geometry by reducing overlap of class convex hulls
and improves unseen class generalization.

In order to evaluate the applicability of GSP beyond
metric learning, we applied GSP to ImageNet classifica-
tion tasks using ResNetV2 [10] and EfficientNetV2 [34]
models. We took the official Tensorflow Keras models
and only replaced pooling layers with GSP.

Table 3: Evaluation in classification task

ImageNet Acc. P@1 MAP@R

RN50V2 75.26 69.30 41.18
+GSP 76.53 71.34 42.58

ENV2B3 80.03 79.23 59.98
+GSP 82.00 80.80 62.75

The results suggests that our method is applicable
beyond metric lerning as it improves ImageNet classifi-
cation accuracy for both ResNetV2 and EfficientNetV2
models. We additionally assessed the metric learning
performance of the embedding vectors pre-classification.
By reducing the embedding dimension to 512 through

LDA, we then evaluated the resulting embedding ge-
ometry using P@1 and MAP@R metrics, and observed
that GSP yields better feature geometry.

1.3. Evaluation of Other Pooling Alternatives

We evaluate 14 additional pooling alternatives on
Ciffar Collage and CUB datasets with contrastive (C2)
and Proxy-NCA++ (PNCA) losses. We pick contrastive
since it is one of the best performing sample-based
loss. We pick Proxy-NCA++ since most of the pooling
methods are tailored for landmark-based image retrieval
and use classification loss akin to Proxy-NCA++. We
particularly consider Cifar Collage dataset since the
images of different classes share a considerable amount
of semantic entities, enabling us to assess the methods
w.r.t. their ability to discard the nuisance information.

Compared methods. In addition to our method
(GSP) and global average pooling (GAP), we consider:
i) global max pooling (GMP), ii) GAP+GMP [13], iii)
CBAM [41], iv) CroW [12], v) DeLF [27], vi) generalized
max pooling (GeMax) [23], vii) generalized mean pool-
ing (GeMean) [29], viii) GSoP [8], ix) optimal transport
based aggregation (OTP) [15,21], x) SOLAR [26], xi)
trainable SMK (T-SMK) [36], xii) NetVLAD [1], xiii)
WELDON [7], and xiv) visual transformer encoder
with class token (TFM) [6]. Among those, OTP and
VLAD are ensemble based methods and typically ne-
cessitate large embedding dimensions. Thus, we both
experimented their 128D version -(8x16) (8 prototypes
of 16D vectors) and 8192D version -(64x128) (64 pro-
totypes of 128D vectors). We note that some of our
baselines utilize attention based pooling. Notably, at-
tention mechanism is the key part of DeLF, SOLAR,
and GSoP. In fact, DeLF can be seen as equivalent
to a single-layer residual-free transformer layer with a
class token. To perform a more direct comparison with
transformers, we conducted experiments by replacing
GAP with transformer layers using a class token. We
evaluated 1, 2, 4, and 8-layer transformers (TFM-#).

Setting. For CUB dataset, the experimental setting
follows Sec. 1.6-Fair evaluation and we report MAP@R
performance of the 4-model average at 128 dimensional
embeddings each. For Cifar Collage dataset, the exper-
imental setting follows Sec. 2.2 and we report MAP@R
performance. We provide the results in Table 4.

Results. Evaluations show that our method is su-
perior to other pooling alternatives including prototype
based VLAD and OTP. Predominantly, for 128 dimen-
sional embeddings, our method outperforms prototype
based methods by large margin. In CUB dataset, the
pooling methods either are inferior to or perform on
par with GAP. The performance improvements of the
superior methods are less than 1%, implying that our
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improvements in the order of 1-2% reported in Table 2
(main paper) is substantial. Besides, the methods that
mask the feature map outperform GAP by large margin
in Cifar Collage dataset. That said, our method outper-
forms all the methods except for Contrastive+VLAD by
large margin in Cifar Collage dataset, yet another ev-
idence for better feature selection mechanism of our
method. For instance in CUB dataset, DeLF and
GeMean are on par with our method which has slightly
better performance. Yet, our method outperforms both
by large margin in Cifar Collage dataset.

Superior selection mechanism. Comparing to
CroW, T-SMK and CBAM, our method outperforms
them by large margin. Those methods are the built
on feature magnitude based saliency, assuming that
the backbone functions must be able to zero-out nui-
sance information. Yet, such a requirement is restrictive
for the parameter space and annihilation of the non-
discriminative information might not be feasible in some
problems. We experimentally observe such a weakness
of CroW, T-SMK and CBAM in Cifar Collage dataset
where the nuisance information cannot be zeroed-out
by the backbone. Our formulation do not have such a

restrictive assumption and thus substantially superior
to them.

Superior attention mechanism. Similarly,
attention-based weighting methods, DeLF and GSoP,
do not have explicit control on feature selection be-
havior and might result in poor models when jointly
trained with the feature extractor [27], which we also
observe in Cifar Collage experiments. On the contrary,
we have explicit control on the pooling behavior with
µ parameter and the behavior of our method is stable
and consistent across datasets and with different loss
functions. We also found that our method outperforms
direct application of transformer based pooling.

Simpler and interpretable. Attention-based
methods DeLF, GSoP, and SOLAR typically intro-
duce several convolution layers to compute the feature
weights. We only introduce an m-kernel 1x1 convo-
lution layer (i.e., m-many trainable prototypes) and
obtain better results. We should note that our pooling
operation is as simple as performing a convolution (i.e.,
distance computation) and alternating normalization
of a vector and a scalar. Additionally, we are able to
incorporate a zero-shot regularization into our problem

Table 4: Evaluation of feature pooling methods on Cifar Collage and CUB datasets with Contrastive and
ProxyNCA++ losses for DML task. Red: the best, Blue: the second best, Bold: the third best.

128D - MAP@R

Dataset→ Cifar Collage CUB

Method↓ Loss→ Contrastive ProxyNCA++ Contrastive ProxyNCA++

CBAM [41] 7.87 10.99 18.45 18.21
CroW [12] 10.09 11.48 20.88 20.42
DeLF [27] 11.44 24.83 21.42 20.51
GeMax [23] 7.04 7.83 18.85 17.83
GeMean [29] 10.97 10.60 21.50 20.71
GSoP [8] 11.15 17.73 20.52 15.72
OTP-(8x16) [21] 7.02 11.55 15.19 13.57
OTP-(64x128) [21] 7.57 11.79 20.88 20.48
SOLAR [26] 17.30 20.36 19.89 20.14
TFM-1 [6] 8.84 10.83 17.82 19.13
TFM-2 [6] 16.48 21.00 17.16 18.13
TFM-4 [6] 18.51 21.56 16.91 18.22
TFM-8 [6] 18.18 19.68 16.31 17.47
T-SMK [36] 9.21 13.15 21.01 20.23
VLAD-(8x16) [1] 21.73 19.68 15.19 13.08
VLAD-(64x128) [1] 22.52 21.15 16.67 16.53
WELDON [7] 13.81 20.38 20.67 20.31
GAP 8.09 10.68 20.58 20.63
GMP 9.53 11.25 20.66 20.33
GMP+GAP 10.01 11.85 20.88 20.68
GSP 22.68 27.61 21.52 20.75
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naturally by using the prototype assignment weights.
We can as well incorporate such a loss in DeLF which
has 1x1 convolution to compute prototype similarities.
However, we first need a mechanism to aggregate the
per prototype similarities (e.g ., sum and normaliza-
tion). Indeed, normalizing the similarities channel-wise
and spatially summing them correspond to solving our
problem with µ = 1.

Other pooling methods, i.e., GAP, GMP,
GAP+GMP, GeMax, GeMean, WELDON, VLAD,
OTP, do not build on discriminative feature selection.
Thus, our method substantially outperforms those.

1.4. Computational Analysis

Forward and backward computation of proposed
GSP method can be implemented using only matrix-
vector products. Moreover, having closed-form matrix-
inversion-free expression for the loss gradient enables
memory efficient back propagation since the output of
each iteration must be stored otherwise.

We perform k iterations to obtain the pooling weights
and at each iteration, we only perform matrix-vector
products. In this sense, the back propagation can be
achieved using automatic-differentiation. One problem
with automatic differentiation is that the computation
load increases with increasing k. On the other hand,
with closed-form gradient expression, we do not have
such issue and in fact we have constant back propagation
complexity. Granted that the closed-form expression
demands exact solution of the problem (i.e., k →∞),
forward computation puts a little computation overhead
and is memory efficient since we discard the intermedi-
ate outputs. Moreover, our initial empirical study show
that our problems typically converges for k > 50 and
we observe similar performances with k ⩾ 25.

The choice of k is indeed problem dependent (i.e.,
size of the feature map and the number of prototypes).
Thus, its effect on computation load should be analyzed.
We study the effect of k with automatic differentiation

Figure 1: Computation increase (↑) in inference with
GSP using k iterations

Figure 2: Comparing closed-form gradient with auto-
matic differentiation through analyzing the effect of k
on computation in CUB with C2 loss. Shaded regions
represent ∓std.

and with our closed-form gradient expression. We pro-
vide the related plots in Fig. 2. We observe that with
closed-form gradients, our method puts a little compu-
tation overhead and increasing k has marginal effect.
On the contrary, with automatic differentiation, the
computational complexity substantially increases.

We have further provided the inference times for
various optimization steps (k) in Fig. 1. The additional
computational complexity introduced by our method
is minor, resulting in a less than 6% increase in the
time per image (from 43.1 ms to 45.6 ms) within the
typical operation interval of k (25-50). Therefore, our
method remains computationally feasible for real-time
processing.
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1.5. Hyperparameter Selection

We first perform a screening experiment to see the
effect of the parameters. We design a 2-level fractional
factorial (i.e., a subset of the all possible combinations)
experiment.

We provide the results in Tab. 5. In our analysis,
we find that lower the better for λ and µ. Thus, we
set µ = 0.3 and λ = 0.1. ε is observed to have the
most effect and number of prototypes, m, seems to have
no significant effect. Nevertheless, we jointly search
for m and ε. To this end, we perform grid search in
CUB dataset with Contrastive (C2) and Proxy NCA++
(PNCA) losses. We provide the results in Fig. 3-(a). We
see that both losses have their best performance when
m = 64. On the other hand, ε = 5.0 works better for C2
while ε = 0.5 works better for PNCA. We additionally
perform a small experiment to see whether ε = 0.5 is
the case for Proxy Anchor loss as well and observe that
ε = 0.5 is a better choice over ε = 5.0. As the result of
m-ε search, we set ε = 5.0 for non-proxy based losses
and ε = 0.5 for proxy-based losses.

Fixing µ = 0.3, λ = 0.1, ε = 0.5( or 5.0), we further
experiment the effect of number of prototypes m in
large datasets (i.e., SOP and In-shop). We provide the
corresponding performance plots in Fig. 3-(b). Support-
ing our initial analysis, m seemingly does not have a
significant effect once it is not small (e.g ., m ⩾ 64).
We observe that any choice of m ⩾ 64 provides perfor-
mance improvement. With that being said, increasing
m does not bring substantial improvement over rela-
tively smaller values. Considering the results of the ex-
periment, we set m = 128 for SOP and In-shop datasets
since both C2 and PNCA losses perform slightly better
with m = 128 than the other choices of m.

Table 5: Initial 2-level fractional factorial screening
experiments for parameter tuning (conducted in CUB)

Setting MAP@R

m µ ε λ C2 PNCA

16 0.3 0.5 0.1 40.63 40.59
16 0.7 0.5 0.5 40.41 40.34
128 0.3 0.5 0.5 40.22 40.35
128 0.7 0.5 0.1 40.07 40.85
16 0.3 20 0.5 36.11 40.51
16 0.7 20 0.1 39.11 39.88
128 0.3 20 0.1 39.61 39.12
128 0.7 20 0.5 35.36 39.92

Baseline 39.77 39.90

1.6. Experimental Setup

1.6.1 Datasets

We perform our experiments on 4 widely-used bench-
mark datasets: Stanford Online Products (SOP) [28], In-
shop [19], Cars196 [16] and, CUB-200-2011 (CUB) [38].

SOP has 22,634 classes with 120,053 product images.
The first 11,318 classes (59,551 images) are split for
training and the other 11,316 (60,502 images) classes
are used for testing.

In-shop has 7,986 classes with 72,712 images. We
use 3,997 classes with 25,882 images as the training
set. For the evaluation, we use 14,218 images of 3,985
classes as the query and 12,612 images of 3,985 classes
as the gallery set.

Cars196 contains 196 classes with 16,185 images.
The first 98 classes (8,054 images) are used for training
and remaining 98 classes (8,131 images) are reserved
for testing.

(a) (b)

Figure 3: Parameter search for m : number of prototoypes and ε: entropy smoothing coefficient. We fix µ = 0.3
and λ = 0.1. (a) Searching m− ε space in CUB dataset. (b) Effect of m once we fix ε = 5 for Contrastive (C2) and
ε = 0.5 for Proxy NCA++ (PNCA).
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CUB-200-2011 dataset consists of 200 classes with
11,788 images. The first 100 classes (5,864 images) are
split for training, the rest of 100 classes (5,924 images)
are used for testing.

Data augmentation follows [24]. During training,
we resize each image so that its shorter side has length
256, then make a random crop between 40 and 256, and
aspect ratio between 3/4 and 4/3. We resize the resultant
image to 227x227 and apply random horizontal flip with
50% probability. During evaluation, images are resized
to 256 and then center cropped to 227x227.

1.6.2 Training Splits

Fair evaluation. We split datasets into disjoint train-
ing, validation and test sets according to [24]. In par-
ticular, we partition 50%/50% for training and test, and
further split training data to 4 partitions where 4 mod-
els are to be trained by exploiting 1/4 as validation while
training on 3/4.

Conventional evaluation. Following relatively old-
fashioned conventional evaluation [28], we use the whole
train split of the dataset for training and we use the test
split for evaluation as well as monitoring the training
for early stopping.

Hyperparameter tuning. For the additional ex-
periments related to the effect of hyperparameters, we
split training set into 5 splits and train a single model
on the 4/5 of the set while using 1/5 for the validation.

1.6.3 Evaluation Metrics

We consider precision at 1 (P@1) and mean average
precision (MAP@R) at R where R is defined for each
query1 and is the total number of true references as the
query. Among those, MAP@R performance metric is
shown to better reflect the geometry of the embedding
space and to be less noisy as the evaluation metric
[24]. Thus, we use MAP@R to monitor training in our
experiments except for conventional evaluation setting
where we monitor P@1.

P@1: Find the nearest reference to the query. The
score for that query is 1 if the reference is of the same
class, 0 otherwise. Average over all queries gives P@1
metric.

P@R: For a query, i, find Ri nearest references to the
query and let ri be the number of true references in those
Ri-neighbourhood. The score for that query is P@Ri =
ri/Ri. Average over all queries gives P@R metric, i.e.,
P@R = 1

n

∑
i∈[n]

P@Ri, where n is the number of queries.

1A query is an image for which similar images are to be
retrieved, and the references are the images in the searchable
database.

MAP@R: For a query, i, we define MAP@Ri :=
1
Ri

∑
i∈[Ri]

P (i), where P (i) = P@Ri if ith retrieval is

correct or 0 otherwise. Average over all queries gives
MAP@R metric, i.e., MAP@R = 1

n

∑
i∈[n]

MAP@Ri,

where n is the number of queries.

1.6.4 Training Procedure

Fair evaluation. We use Adam [14] optimizer with
constant 1095 learning rate, 1094 weight decay, and de-
fault moment parameters, β1=.9 and β2=.99. We use
batch size of 32 (4 samples per class). We evaluate
validation MAP@R for every 100 steps of training in
CUB and Cars196, for 1000 steps in SOP and In-shop.
We stop training if no improvement is observed for 15
steps in CUB and Cars196, and 10 steps in SOP and
In-shop. We recover the parameters with the best vali-
dation performance. Following [24], we train 4 models
for each 3/4 partition of the train set. Each model is
trained 3 times. Hence, we have 34 = 81 many realiza-
tions of 4-model collections. We present the average
performance as well as the standard deviation (std) of
such 81 models’ evaluations.

Conventional evaluation. We use Adam [14] op-
timizer with default moment parameters, β1=.9 and
β2=.99. Following recent works [13], we use reduce on
plateau learning rate scheduler with patience 4. The
initial learning rate is 1095 for CUB, and 1094 for Cars,
SOP and In-shop. We use 1094 weight decay for BNIn-
ception backbone and 4 1094 wight decay for ResNet50
backbone. We use batch size of 128 (4 samples per
class) for BNInception backbone and 112 (4 samples
per class) for ResNet backbone (following [31]). We
evaluate validation P@1 for every 25 steps of training
in CUB and Cars196, for 250 steps in SOP and In-
shop. We stop training if no improvement is observed
for 15 steps in CUB and Cars196, and 10 steps in SOP
and In-shop. We recover the parameters with the best
validation performance. We repeat each experiment 3
times and report the best result. For the evaluations
on LIBC framework [33], we follow their experimental
setting.

Hyperparameter tuning. We use Adam [14] opti-
mizer with constant 1095 learning rate, 1094 weight de-
cay, and default moment parameters, β1=.9 and β2=.99.
We use batch size of 32 (4 samples per class). We evalu-
ate validation MAP@R for every 100 steps of training in
CUB and Cars196, for 1000 steps in SOP and In-shop.
We stop training if no improvement is observed for 10
steps in CUB and Cars196, and 7 steps in SOP and
In-shop. We recover the parameters with the best vali-
dation performance. We train a single model on the 4/5
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of the training set while using 1/5 for the validation. We
repeat each experiment 3 times and report the averaged
result.

1.6.5 Embedding vectors

Fair evaluation. Embedding dimension is fixed to 128.
During training and evaluation, the embedding vectors
are ℓ2 normalized. We follow the evaluation method
proposed in [24] and produce two results: i) Average
performance (128 dimensional) of 4-fold models and ii)
Ensemble performance (concatenated 512 dimensional)
of 4-fold models where the embedding vector is obtained
by concatenated 128D vectors of the individual models
before retrieval.

Conventional evaluation. Embedding dimension
is 512 in both BNInception and ResNet50 experiments.

Hyperparameter tuning. Embedding dimension
is fixed to 128.

1.6.6 Baselines with GSP

We evaluate our method with C1+XBM+GSP : Cross-
batch memory (XBM) [40] with original Contrastive
loss (C1) [9], C2+GSP : Contrastive loss with positive
margin [42], MS+GSP : Multi-similarity (MS) loss [39],
Triplet+GSP : Triplet loss [32], PNCA+GSP : Prox-
yNCA++ loss [35], PAnchor+GSP : ProxyAnchor loss
[13].

1.6.7 Hyperparameters

For the hyperparameter selection, we exploit the work
[24] that performed parameter search via Bayesian op-
timization on variety of losses. We further experiment
the suggested parameters from the original papers and
official implementations. We pick the best performing
parameters. We perform no further parameter tuning
for the baseline methods’ parameters when applied with
our method to purely examine the effectiveness of our
method.

C1: We adopted XBM’s official implementation for
fair comparison. We use 0.5 margin for all datasets.

C2: C2 has two parameters, (m+,m−): positive
margin, m+, and negative margin. We set (m+,m−)
to (0, 0.3841), (0.2652, 0.5409), (0.2858, 0.5130),
(0.2858, 0.5130) for CUB, Cars196, In-shop and SOP,
respectively.

Triplet: We set its margin to 0.0961, 0.1190, 0.0451,
0.0451 for CUB, Cars196, In-shop and SOP, respec-
tively.

MS: We set its parameters (α, β, λ) to (2, 40, 0.5),
(14.35, 75.83, 0.66), (8.49, 57.38, 0.41), (2, 40, 0.5) for
CUB, Cars196, In-shop and SOP, respectively.

ProxyAnchor: We set its two paremeters (δ, α) to
(0.1, 32) for all datasets. We use 1 sample per class in
batch setting (i.e., 32 classes with 1 samples per batch),
we perform 1 epoch warm-up training of the embedding
layer, and we apply learning rate multiplier of 100 for
the proxies during training. For SOP dataset, we use
5 1096 learning rate.

ProxyNCA++: We set its temperature parameter
to 0.11 for all datasets. We use 1 sample per class in
batch setting (i.e., 32 classes with 1 samples per batch),
we perform 1 epoch warm-up training of the embedding
layer, and we apply learning rate multiplier of 100 for
the proxies.

XBM: We evaluate XBM with C1 since in the orig-
inal paper, contrastive loss is reported to be the best
performing baseline with XBM. We set the memory
size of XBM according to the dataset. For CUB and
Cars196, we use memory size of 25 batches. For In-shop,
we use 400 batches and for SOP we use 1400 batches.
We perform 1K steps of training with the baseline loss
prior to integrate XBM loss in order to ensure XBM’s
slow drift assumption.

GSP: For the hyperparameters of our method, we
perform parameters search, details of which are provided
in Sec. 1.5. We use 64-many prototypes in CUB and
Cars, and 128-many prototypes in SOP and In-shop.
We use ε=0.5 for proxy-based losses and ε=5.0 for non-
proxy losses. For the rest, we set µ=0.3, ϵ=0.05, and
we iterate until k=100 in Proposition 4.1. For zero-shot
prediction loss coefficient (i.e., (19λ)LDML + λLZS),
we set λ=0.1.

2. Details of the Other Empirical Work

2.1. Synthetic Study

We design a synthetic empirical study to evaluate
GSP in a fully controlled manner. We consider 16-class
problem such that classes are defined over trainable
tokens. In this setting, tokens correspond to semantic
entities but we choose to give a specific working to
emphasize that they are trained as part of the learning.
Each class is defined with 4 distinct tokens and there
are also 4 background tokens shared by all classes. For
example, a "car" class would have tokens like "tire"
and "window" as well as background tokens of "tree"
and "road".

We sample class representations from both class spe-
cific and background tokens according to a mixing ra-
tio µ̃ ∼ N (0.5, 0.1). We sample a total of 50 tokens
and such a 50-many feature collection will correspond
to a training sample (i.e., we are mimicking CNN’s
output with trainable tokens). For instance, given
class tokens for class-c, ν(c) = {ν(c)1 , ν

(c)
2 , ν

(c)
3 , ν

(c)
4 }
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and shared tokens, ν(b) = {ν(b)1 , ν
(b)
2 , ν

(b)
3 , ν

(b)
4 }; we

first sample µ = 0.4 and then sample 20 tokens
from ν(c) with replacement, and 30 tokens from
ν(b), forming a feature collection for a class-c, i.e.,
f (c) = {ν(c)3 , ν

(c)
1 , ν

(c)
1 , ν

(c)
3 , . . . , ν

(b)
4 , ν

(b)
3 , ν

(b)
4 , ν

(b)
1 , . . .}

We then obtain global representations using GAP and
GSP.

We do not apply ℓ2 normalization on the global
representations. We also constrain the range of the
token vectors to be in between [90.3, 0.3] to bound
the magnitude of the learned vectors. We use default
Adam optimizer with 1094 learning rate and perform
early stopping with 30 epoch patience by monitoring
MAP@R. In each batch, we use 4 samples from 16
classes.

2.2. Cifar Collage

We consider the 20 super-classes of Cifar100 dataset
[17] where each has 5 sub-classes. For each super-class,
we split the sub-classes for train (2), validation (1),
and test (2). We consider 4 super-classes as the shared
classes and compose 4x4-stitched collage images for the
rest 16 classes. In particular, we sample an image from
a class and then sample 3 images from shared classes.
We illustrate a sample formation process in Fig. 4.

Figure 4: Sample generation for Cifar Collage dataset

We should note that the classes exploited in training,
validation and test are disjoint. For instance, if a tree
class is used as a shared class in training, then that
tree class does not exist in validation or test set as a
shared feature. Namely, in our problem setting, both
the background and the foreground classes are disjoint
across training, validation and test sets. Such a setting
is useful to analyze zero-shot transfer capability of our
method.

We use ResNet20 (i.e., 3 stages, 3 blocks) backbone
pretrained on Cifar100 classification task. We use ℓ2
normalization on global representations. We use default
Adam optimizer with initial 0.001 learning rate. We use
reduce on plateau with 0.5 decay factor and 5 epochs
patience. For GSP, we set m = 128, µ = 0.2, ε = 10, λ =
0.5. We use 4 samples from 16 classes in a batch.

2.3. Evaluation of Zero-shot Prediction Loss

We train on Cifar10 [17] dataset with 8 prototypes
using ProxyNCA++ [35] (PNCA) loss with and with-
out LZS . We then use test set to compute attribute
histograms for each class. Namely, we aggregate the
marginal transport plans of each sample in a class to
obtain the histogram. Similarly, for each class, we
compute the mean embedding vector (i.e., we average
embedding vectors of the samples of a class). Our aim
is to fit a linear predictor to map attribute vectors to
the mean embeddings.

To quantify the zero-shot prediction performance,
we randomly split the classes into half and apply cross-
batch zero-shot prediction. Specifically, we fit a linear
predictor using 5 classes and then use that transforma-
tion to map the other 5 classes to their mean embed-
dings. We then compute pairwise distance between the
predicted means and the true means. We then evaluate
the nearest neighbour classification performance. We
use both ℓ2 distance and cosine distance while comput-
ing the pairwise distances. We repeat the experiment
1000 times with different class splits.
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A. Appendix

A.1. Proof for Theorem 4.1

Proof. ρ∗ is obtained as the solution of the following optimal transport problem:

ρ∗, π∗ =argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij cijπij .

Given solutions (ρ∗, π∗), for µ=1, from the 3rd constraint, we have Σijπ
∗
ij=1. Then, using the 2nd constraint, we

write: ∑
j ρ

∗
j +

∑
j

∑
i π

∗
ij =

∑
j

1
n

where j∈[n] for n-many convolutional features. Hence, we have
∑

j ρ
∗ = 0 which implies ρ∗=0 owing to non-

negativity constraint. Finally, pooling weights becomes pi =
1/n−��ρ

∗
i

µ
=1

= 1/n.

A.2. Proof for Proposition 4.2

Before starting our proof, we first derive an iterative approach for the solution of (P2). We then prove that the
iterations in Proposition 4.2 can be used to obtain the solution.

We can write (P2) equivalently as:

ρ(ε), π(ε) =argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij cijπij +

1
ε (
∑

ij πij log πij +
∑

j ρj log ρj)

+
∑

j 0ρj −
∑

ij πij −
∑

j ρj +
∑

ij e
9εcij +

∑
j e

9ε0

Rearranging the terms we get:

ρ(ε), π(ε) =argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij πij log

πij

e9εcij
+
∑

j ρj log
ρj

e9ε0 −
∑

ij πij −
∑

j ρj +
∑

ij e
9εcij +

∑
j e

9ε0

which is generalized Kullback–Leibler divergence (KLD) between (ρ, π) and (exp (9ε0), exp (9εc)). Hence, we
reformulate the problem as a KLD prjoection onto a convex set, which can be solved by Bregman Projections
(i.e., alternating projections onto constraint sets) [2, 3]. Defining C1 := {(ρ, π) | ρj +

∑
ij πij = 1/n ∀j} and

C2 := {(ρ, π) |
∑

ij πij = µ}, and omitting constants, we can write the problem as:

ρ(ε), π(ε) = argmin
ρ,π⩾0

(ρ,π)∈C1∩C2

∑
ij πij(log

πij

e9εcij
9 1) +

∑
j ρj(log

ρj

e9ε0 9 1) (P2′)

Given, (ρ(k), π(k))), at iteration k, KLD projection onto C1, i.e., (ρ(k+1), π(k+1)) := PKL
C1

(ρ(k), π(k)), reads:

ρ
(k+1)
j = 1/n(ρ

(k)
j +

∑
i π

(k)
ij )91ρ

(k)
j ,

π(k+1) = 1/n(ρ
(k)
j +

∑
i π

(k)
ij )91π

(k)
ij

where the results follow from method of Lagrange multipliers. Similarly, for PKL
C2

(ρ(k), π(k)), we have:

ρ(k+1) = ρ(k) , π(k+1) = µ∑
ij π

(k)
ij

π(k) .

Given initialization, (ρ(0), π(0)) = (1n, exp(9εc)), we obtain the pairs (ρ(k), π(k)) for k = 0, 1, 2, . . . as:

ρ(k+1) = 1/n(ρ(k) + π(k)⊺1m)91 ⊙ ρ(k) , π(k+1) = µ(1⊺
mπ̂1n)

91π̂

where π̂ = π(k)Diag
(
1/n(ρ(k) + π(k)⊺1m)91

) (A.1)
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Proof. We will prove by induction. From Proposition 4.2, we have

ρ(k+1) = 1/n (1 + t(k) exp(9εc)⊺1m)91, t(k+1) = µ (1⊺
m exp(9εc)ρ(k+1))91

and π(k) = t(k) exp(9εc)Diag(ρ(k)). It is easy to show that the expressions hold for the pair (ρ(1), π(1)). Now,
assuming that the expressions also holds for arbitrary (ρ(k

′), π(k′)). We have

ρ(k
′+1) = 1/n(ρ(k

′) + π(k′)⊺1m)91 ⊙ ρ(k
′)

Replacing π(k′) = t(k
′) exp(9εc)Diag(ρ(k

′)) we get:

ρ(k
′+1) = 1/n(ρ(k

′) +Diag(ρ(k
′))t(k

′) exp(9εc)⊺1m)91 ⊙ ρ(k
′)

where ρ(k
′) terms cancel out, resulting in:

ρ(k
′+1) = 1/n(1 + t(k

′) exp(9εc)⊺1m)91.

Similarly, we express π̂ as:

π̂ = t(k
′) exp(9εc)Diag(ρk

′
)Diag

(
1/n

(
ρ(k

′) +Diag(ρ(k
′))t(k

′) exp(9εc)⊺1m

)91)
again ρ(k

′) terms cancel out, resulting in:

π̂ = t(k
′) exp(9εc)Diag(1/n(1 + t(k

′) exp(9εc)⊺1m)91) = t(k
′) exp(9εc)Diag(ρ(k

′+1)).

Hence, π(k′+1) becomes:

π(k′+1) = µ(1⊺
mt(k

′) exp(9εc)Diag(ρ(k
′+1))1n)

91t(k
′) exp(9εc)Diag(ρ(k

′+1))

= 1
t(k′) µ(1

⊺
m exp(9εc)ρ(k

′+1))91︸ ︷︷ ︸
=t(k′+1)

t(k
′) exp(9εc)Diag(ρ(k

′+1))

= t(k
′+1) exp(9εc)Diag(ρ(k

′+1)),

meaning that the expressions also hold for the pair (ρ(k
′+1), π(k′+1)).

A.3. Proof for Proposition 4.3

Proof. We start our proof by expressing (P2′) in a compact form as:

x(ε) = argmin
x⩾0
Ax=b

c̄⊺x+ 1
εx

⊺(log x− 1(m+1)n)

where x denotes the vector formed by stacking ρ and the row vectors of π, c̄ denotes the vector formed by stacking
n-dimensional zero vector and the row vectors of c, and A and b are such that Ax = b imposes transport constraints
as:

A =

[
Inxn

m︷ ︸︸ ︷
Inxn · · · Inxn

0⊺
n 1⊺

mn

]
, b = [1/n1⊺

n µ]⊺

From Lagrangian dual, we have:
x(ε) = exp(9ε(c̄+A⊺λ∗))

where λ∗ is the optimal dual Lagrangian satisfying:

A exp(9ε(c̄+A⊺λ∗)) = b

Defining [∂x∂c ]ij :=
∂xj

∂ci
, we have;

∂x(ε)

∂c = −εĪ(I + ∂λ∗

∂c̄ A)Diag(x(ε))
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where Ī := [0(mn)xn I(mn)x((m+1)n)]. Similarly, for the dual variable, we have:

−ε(I + ∂λ∗

∂c̄ A)Diag(x(ε))A⊺ = 0⇒ ∂λ∗

∂c̄ = 9Diag(x(ε))A⊺(ADiag(x(ε))A⊺)91.

Putting back the expression for ∂λ∗

∂c̄ in ∂x(ε)

∂c , we obtain:

∂x(ε)

∂c = −εĪ
(
Diag(x(ε))−Diag(x(ε))A⊺(ADiag(x(ε))A⊺)91ADiag(x(ε))

)
,

which includes (m+1) by n matrix inversion, H := ADiag(x(ε))A⊺. We now show that H91 can be obtained without
explicit matrix inversion.

H can be expressed as:

H =

[
1/nI 1/n− ρ

1/n− ρ⊺ µ

]
H is Hermitian and positive definite. Using block matrix inversion formula for such matrices (Corrolary 4.1 of [20]),
we obtain the inverse as;

H91 =

[
nI + k91ρ̂ρ̂⊺ −k91ρ̂
−k91ρ̂⊺ k91

]
where k = 1− µ− nρ(ε)⊺ρ(ε) and ρ̂ = 1− nρ(ε).

Given ∂L
∂x(ε) , i.e., ( ∂L

∂ρ(ε) ,
∂L

∂π(ε) ), the rest of the proof to obtain ∂L
∂c follows from right multiplying the Jacobian,

i.e., ∂L
∂c = ∂x(ε)

∂c
∂L

∂x(ε) and rearranging the terms.

Table 6: Comparing our pooling method with OT-based pooling

Item↓ Method→ Ensemble of SWD Monge Maps
[25]

OT Monge Map
[15, 21]

Ours (GSP)

optimization problem s†-many 1D OT argmin
π≥0

Σiπij=1/n
Σjπij=1/m

Σijcijπij argmin
ρ,π≥0

ρj+Σiπij=1/n
Σijπij=µ

Σijcijπij

image representation [g1 | g2 | · · · | gs]†
√
m[f1 | f2 | · · · | fn]π⊺ Σi

1−nρi

nµ fi

dimension m× s m× d d

feature selection ✗ ✗ ✓

gradient computation auto-diff auto-diff closed form expression

matrix-inverse-free gradient ✓ ✗ ✓

† s: number of slices, gi: projection of {fj}j to slice-i with sorted j according to Monge Map.
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B. Optimal Transport Based Operators

In this section, we briefly discuss optimal transport
(OT) based aggregation and selection operators. We
provide their formulations to show how our formulation
differs from them.

B.1. Feature Aggregation

Given a cost map cij = ∥ωi 9 fj∥2 which is an m
(number of prototypes) by n (number of features) matrix
representing the closeness of prototypes ωi and features
fj , [21] consider the following OT problem:

π∗ =argmin
π⩾0

Σiπij=1/n
Σjπij=1/m

∑
ij cijπij (P4)

and defines their aggregated feature as:

g =
√
m[f1 | f2 | · · · | fn]π⊺ . (B.1)

Namely, g is an ensemble of m vectors each of which is the
weighted aggregation of {fi}i∈[n] with the weights pro-
portional to the assignment weights to the corresponding
prototype. The same aggregation scheme is also discov-
ered within the context of linear Wasserstein embeddings
via Monge maps and is shown to be a barycentric pro-
jection of the feature set with the transport plan to
approximate Monge map [15]. Similar to them, ensem-
ble of Monge maps corresponding to sliced-Wasserstein
distances (SWD) are further employed in set aggrega-
tion [25]. In such ensemble representations, there is no
feature selection mechanism and thus, all the features
are somehow included in the image representation.

For instance, if we further sum those m vectors of g in
Eq. (B.1) to obtain a single global representation, we end
up with global average pooling: g⊺1m =

√
m[f1 | f2 |

· · · | fn]π⊺1m =
√
m/n[f1 | f2 | · · · | fn]1n =

√
m/nΣifi.

Briefly, those optimal transport based set aggrega-
tors, [15, 21, 25] map a set of features to another set of
features without discarding any and do not provide a
natural way to aggregate the class-discriminative subset
of the features. Such representation schemes are useful
for structural matching. Albeit enabling ℓ2 metric as a
similarity measure for the sets, their ensemble based rep-
resentation results in very high dimensional embeddings.
On the contrary, our formulation effectively enables learn-
ing to select discriminative features and maps a set of
features to a single feature that is of the same dimension
and is distilled from nuisance information. We summarize
the comparison of our pooling method with the optimal
transport based counterparts in Table 6.

B.2. Top-k Selection

Given n-many scalars as x = [xi]i∈[n] and m-many
scalars as y = [yi]i∈[m] with y is in an increasing family,

i.e., y1<y2 < . . ., [43] considers the following OT:

π∗ =argmin
π⩾0

Σiπij=qj
Σjπij=pi

∑
ij cijπij (P5)

where cij = |yi − xj | and p is m-dimensional probability
simplex, i.e., p ∈ {p∈IRm

≤0 | Σipi=1}. Then, top-k selec-
tion is formulated with the setting q = 1/n1n, y = [0, 1]
and p = [ kn

n9k
n ]⊺. Similarly, sorted top-k selection is for-

mulated with the setting y = [k] and p = [ 1n · · ·
1
n

n9k
n ]⊺.

Solving the same problem (P5), [4] formulate top-k rank-
ing by letting q and p be arbitrary probability simplex
and y be in an increasing family.

Such top-k formulations are suitable for select-
ing/ranking scalars. In our problem, the aim is to select
a subset of features that are closest to the prototypes
which are representatives for the discriminative informa-
tion. Namely, we have a problem of subset selection from
set-to-set distances. If we had our problem in the form
of set-to-vector, then we would be able to formulate the
problem using (P5). However, there is no natural exten-
sion of the methods in [4, 43] to our problem. Therefore,
we rigorously develop an OT based formulation to express
a discriminative subset selection operation analytically
in a differentiable form.

Our formulation in (P1) differs from the typical op-
timal transport problem exploited in (P5). In optimal
transport, one matches two distributions and transports
all the mass from one to the other. Differently, we trans-
port µ portion of the uniformly distributed masses to the
prototypes that have no restriction on their mass distri-
bution. In our formulation, we have a portion constraint
instead of a target distribution constraint, and we use an
additional decision variable, ρ, accounting for residual
masses. If we do not have ρ and set µ = 1, then the
problem becomes a specific case of an optimal transport
barycenter problem with 1 distribution.

Our problem can be expressed in a compact form by
absorbing ρ into π with zero costs associated in the for-
mulation, as in the proof (Appendix A.3). We choose to
explicitly define ρ in the problem (P1) to show its role.
We believe its residual mass role is more understandable
this way. The benefits of our formulation include that we
can perform feature selection with matrix inversion free
Jacobian and we can change the role of the prototypes as
background representatives simply by using ρ to weight
the features instead of 1/n9ρ in Eq. (4.1). Our specific
formulation further allows us to tailor a zero-shot regu-
larization loss built on the learned prototypes within our
pooling layer.
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C. Implementations with Pseudo Codes

Algorithm 1 Deep Metric Learning Loss with GSP and ZSR

input: (X,Y ) = ({xi}, {yi})i∈b // a batch of image-label pairs
F ← Backbone(X) // a CNN backbone such as BN-Inception, ResNet
(Xp, Z)← {GSP(f)}f∈F // get pooled features and attribute predictions, see Algorithm 2
LZSR ← ZSR(Z, Y ) // compute ZSR loss, see Algorithm 4
LDML ← LossDML(Xp, Y ) // a DML loss such as contrastive, triplet, XBM, LIBC, ...
L ← (19λ)LDML + λLZSR // we set λ=0.1

return L

Algorithm 2 GSP(f)
trainable parameters: ω = {ωi}i∈[m] // m-many prototypes

input: f = {fi}i∈[n] // feature map, n = w h (i.e. widthxheight)
ω̄i ← ωi/max{1,∥ωi∥2} ∀i∈[m]
f̄j ← fj/max{1,∥fj∥2} ∀j∈[n]
cij ← ∥ω̄i 9 f̄j∥2 // cost map, c = {cij}(i,j)∈[m]x[n]

ρ, π ←WeightTransport(c) // see Algorithm 3
f ← 19nρ

µ ⊙ f // re-weight features, ⊙: element-wise multiplication
xp ← ( 1n

∑
i∈[n]

fp
i )

1/p // pooled feature, GSP for p=1, GeMean+GSP for p>1

zi ← 1
µ

∑
j∈[n]

πij ∀i∈[m] // attribute predictions, z = {zi}i∈[m]

return xp, z

Algorithm 3 WeightTransport(c)
hyperparameters: µ : transport ratio, ε : entropy regularization weight, k : number of iterations

forward: gets cost map, c, returns residual weights, ρ, and transport plan π

input: c = {cij}(i,j)∈[m]x[n] // cost map of m-many prototypes and n-many features
κ← exp(9εc), t← 1 // exp is element-wise
repeat k times

ρ← 1/n(1 + t κ⊺1m)91 // A⊺1m: sum A along rows, (·)91 is element-wise
t← µ(1⊺

mκ ρ)91

return ρ, t κDiag(ρ) // π ← t κDiag(ρ)

backward: gets the solution (ρ, π) and the gradients (∂L∂ρ ,
∂L
∂π ), returns ∂L

∂c

input: ρ, π, ∂L
∂ρ ,

∂L
∂π // results of forward pass and the loss gradient w.r.t. them

q ← ρ⊙ ∂L
∂ρ + (π ⊙ ∂L

∂π )
⊺1m // A⊺1m: sum A along rows, ⊙: element-wise multiplication

η ← (ρ⊙ ∂L
∂ρ )

⊺1n 9 n q⊺ρ

∂L
∂c ← 9ε

(
π ⊙ ∂L

∂π − nπDiag
(
q − η

19µ9nρ⊺ρ

)
ρ
)

return ∂L
∂c
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Algorithm 4 ZSR(Z, Y )
trainable parameters: Υ = {υi}i∈[#classes] // a semantic embedding vector for each class label

input: Z={zi}i∈b, Y={yi}i∈b // a batch, b, of attribute prediction vectors, zi, and their labels, yi
(b1, b2)← split b into two class-disjoint halves s.t. {yi}i∈b1∩{yi}i∈b2 = ∅
Υk ← [υyi

]i∈bk for k=1, 2 // label embedding matrix for batch-k, i.e. prediction targets
Zk ← [zi]i∈bk for k=1, 2 // attribute prediction matrix for batch-k, i.e. prediction inputs
Ak ← Υk(Z

⊺
kZk + ϵI)91Z⊺

k for k=1, 2 // fit label embedding predictor for batch-k, ϵ=0.05

Υ̂1 ← A2Z1, Υ̂2 ← A1Z2 // use predictor for bk to predict the label embeddings of bk′

Υ̂← [Υ̂1 | Υ̂2] // concatenate predictions
S ← SoftMax(Υ̂⊺Υ) // similarity scores between predictions and label embeddings
LZSR ← CrossEntropy(S, Y )

return LZSR
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