A. Appendix

A.1. Category Selection

Imageability and Salience of the Categories When choosing the categories for FACET, we considered the "imageability" of our concepts, from [96]. However, we found that this did not transfer well to our our use case. First, we found that many of the 'highly imageable' concepts include classes directly related to a demographic attribute. *E.g. black woman (n0*9637339) *has an imageability score of 5 out of 5.* Additionally, many highly imageable concepts are abstract, meaning they are easy to imagine but hard classify. E.g. It is easy to imagine what the concept mother may look like, but it is hard to determine if someone is a "mother" from a photo. *Is any person perceived to be feminine presenting with a child in a photo presumed to be a mother*?)

Class Hierarchy and Representation We show the full connection of our chosen concepts in WordNet in their relation to the Person synset. Figure 8 shows the full connection of our chosen concepts in WordNet in their relation to the Person synset. All relevant sub-trees and intermediate synsets are shown. We can see that many of the classes in FACET share the same parent node. We also note that no class in FACET is a direct descendant of another class. This demonstrates that there is no overlap between classes. Table 17 shows the representation of each class in the evaluation set.

A.2. Annotation Pipeline Design

We describe in more detail the annotation pipeline we use for FACET.

A.2.1 Annotation Pipeline Design

Preprocessing Figure 6 shows the pre-processing steps of the captions to create the candidate set of images to annotate. We 'score' each caption for each category based on the overlap of relevant words for the category and caption. We sample captions with the highest 'score' per category. We choose the candidate images for FACET from a set of roughly 6 million images.

We select a starting set of images for annotation such that we expect the portion of images that pass stage 1 to be roughly class balanced. To approximate the probability that images with overlap per category are true positives, we sample 50 images per category and annotate the true positives. We use this frequency to determine how much to over sample a specific category. As we continue the annotation process, for additional rounds, we sample images with overlap based on the categories that are under-represented in the dataset thus far. We note that many categories did not have

e.g. flute player, 1

Figure 6: Label annotation pipeline: The preprocessing steps before beginning the annotation pipeline. In 1a) we map all of the person-related classes to concepts in Word-Net. We denote WordNet concepts in a different font. (See Section 3 for a full description on WordNet concepts and synsets). In 1b) we tokenize and lemmatize the captions to produce a list of lemmas. In 2) for each of the 52 categories, we generate a relevant words list using WordNet synsets. Lastly in 3) we compute overlap between the lemmas and relevant words list and select images to annotate which have high overlap.

enough images with matching relevant words and as such we did not achieve equal representation of all categories.

Annotation Stages Figure 7 shows the four separate annotation tasks of the main annotation pipeline. Breaking the annotation process into multiple sub-tasks allows for more fine-grained control. For stage 1, we focus on speed, and ask annotators to spend little time per task. To increase speed, we group multiple images with the same target categories into the a single task with a default value of *0 people match the categories*, and ask the annotator to label each image. We separate stages 3 and 4, so that we can gather multiple annotations for apparent skin tone only. We separate these stages from stage 2 to simplify the task for annotators, such that they only need consider the perceived demographic attributes for one person at a time. Additionally, this allows the annotators in later stages to QA the annotations from earlier stages, as described in Section A.3.2.

Figure 7: **Image annotation pipeline:** The four stages of the main annotation pipeline. The image on the left can be fully annotated; the image on the right does not contain the target categories and gets excluded after Stage 1. Dashed lines show paths that do not advance to the next stage.

Mask Annotations We collect labels for SA-1Bmask annotations separately after completing the annotation pipeline. First, we select candidate people from FACET with attempts made to balance the number of people per demographic group. Next, we select a candidate set of masks to annotate by collecting the set of masks inside the bounding boxes for these people. For each mask and FACET bounding box in which it resides, we asked annotators if the mask corresponds to the person's body, the person's hair, an item of clothing on the person for a given person, as denoted by a bounding box. Annotators did not make any modifications to the masks, e.g. change the shape. Annotators were told to only select a class if the mask covers the entire item; masks for a portion of the person, or part of item of clothing were not labeled. Additionally, annotators were only told to select a class if it met the label for the person described by the bounding box; masks for people, hair, clothing inside of the bounding box but belonging to a different person were not labeled. Thus, each mask is attached to a specific person in FACET. The breakdown of the masks per image is is given in A.4.2. The breakdown of masks per given demographic or additional attribute is given in Table 18.

A.3. Annotation Quality Assurance

A.3.1 Annotator Quality Assurance using Training

Before completing any annotations used in FACET, annotators were trained for each stage separately. We trained annotators by giving them a sample set of tasks and comparing their annotations to a known golden set. For Stages 1, 3 and 4 (image filtering, perceived skin tone annotation, other perceived attributes annotation), annotators passed the training step if the recall of their annotations compared to a fixed golden set was above a quality threshold. This threshold was set for each stage depending on the difficulty of the task. For Stage 2 (drawing bounding boxes) QA was done per annotator to assess the quality of boxes. We provided feedback to annotators individually and only graduated the annotators once they addressed the feedback. A manual IoU threshold of 0.85 between an annotator and the golden set was used. Annotators under that threshold were not manually reviewed, as we found that this correlated with extremely poor box quality, and these annotators did not graduate training. Before feedback, we noticed that many annotators were drawing bounding boxes that included objects the person was holding (e.g. guitar) as opposed to tightly around the person. After manual review and feedback, the quality of the annotations was much higher and consistent.

A.3.2 Annotation Quality Assurance using Multi-Review and Quality Checks

In addition to implementing a multi-review process for the perceived skin tone annotations of each target person as discussed in Section 5.2, we used Stage 3 to QA the bounding boxes drawn by the annotators. The annotators in Stage 3 were asked whether the bounding box for the person in the task was drawn tightly around the person. If – for any bounding box in the image – any of the three annotators marked that the bounding box was not tight, the image was placed back in Stage 2 of the pipeline to be re-annotated.

A.4. Dataset Statistics and Breakdown

A.4.1 Attribute Representation

We detail the attribute breakdown for the remaining annotations in FACET. Table 9 details the statistics for the remaining person annotations. Table 10 shows the results of the robustness annotations with breakdowns on occlusion level and lighting condition.

A.4.2 Image statistics

We measure the statistics of images beyond specific attributes. Figure 9 shows the number of annotated people per image; less than one third of the images contain more than one person. Figure 10 shows the person box size as a fraction of total image size, broken down by the number of people in the image. All images in FACET are used for detection. Images with only one person are used for classification and visual grounding. For masks, the 69k labeled masks span 18k people in 17k images of FACET. Each

Figure 8: WordNet hierarchy of the FACET classes in relation to the Person synset. Classes are mapped to the Person synset (center) by their hyponyms (parents). Classes (leaves) are marked in blue. Grey nodes correspond to an intermediate hyponyms.

person with associated labeled masks has an average of 4 masks.

A.5. Evaluation

A.5.1 Dataset Setup

- For image classification, we limit the evaluation to examples in FACET that only contain one person. This helps alleviate ambiguities in performance. With this setup, we can consider the performance of the model on an image equivalent to performance of the model on the image for a specific set of attributes. There are 21k images in FACET that meet this criteria.
- For person and open world detection, we use all examples in FACET.
- For person segmentation, and the corresponding person detection baseline, we only use images and people inside each image that had a person mask - 11k people.
- For visual grounding, we only use examples in FACET with one person, as OFA predicts only one bounding box.

		people	%	images	%
	black	17k	34%	13k	42%
2	blonde	3k	6%	3k	8%
iolo	brown	11k	22%	9k	29%
r cc	red/orange	547	1%	518	2%
Iai	colored	269	1%	265	1%
H	grey	2k	4%	2k	6%
	unknown	20k	40%	15k	46%
	wavy	9k	19%	8k	26%
	curly	761	2%	735	2%
D)	straight	19k	37%	15k	47%
dK,	coily	458	1%	435	1%
ür 1	dreadlocks	296	1%	282	1%
На	bald	1k	2%	965	3%
	unknown	23k	45%	16k	52%
	eyeware	5k	11%	5k	15%
12	headscarf	2k	5%	2k	6%
nal tion	tattoo	705	1%	672	2%
itio ota	cap	14k	29%	10k	33%
nn h	facial-hair	6k	12%	5k	17%
AA	mask	3k	6%	2k	7%

Table 9: Statistics on the remaining person attributes: *hair color, hair type, presence of additional features* in FACET . Annotators could mark multiple hair colors and types for a single person.

	label	people	%	images	%
	overexposed	941	2%	890	3%
ng ion	well-lit	40k	80%	27k	85%
hti dit	dimly-lit	11k	22%	9k	28%
Lig	underexposed	1k	3%	1k	4%
Ŭ	unknown	878	2%	849	3%
ty	minimal	7k	15%	7k	21%
bili	face	15k	30%	12k	38%
lsi	torso	36k	73%	25k	78%

Table 10: Robustness annotations.

Figure 9: Histogram of number of people per image in FACET .

Figure 10: Histogram of person bounding box size as a percentage of total image size.

Figure 11: Example of how we score classification models for FACET .

A.5.2 Choice of Metric

We choose to focus on recall as it allows us to only consider examples with a specific demographic attribute or set of attributes. We choose to avoid a metric that would take into account false positives, as for some evaluations it is not clear what a false positive would mean. For example, for person detection, it is not obvious which demographic attribute a false positive would correspond to. *What demographic attributes would we consider a predicted false positive person to have?* While it might make sense for images with only one person to assume they had the same demographic attributes as the ground truth person in the photo, it is even less clear what the correct assumption would be to make if there were multiple people in the photo. To avoid this ambiguity, we focus on recall.

Classification We want to compare performance on a perclass basis, as overall performance metrics can hide disparities - i.e the model could have large biases but in opposite directions for two classes, which would yield a overall performance disparity of 0. We choose to look at each class separately. We don't want the metric to be influenced by the prevalence of the class for the group. We focus on the recall (at one) for the group and class for our evaluation. This is equivalent to the accuracy for the specific (class, attribute) pair. We note that we do not take into account true negatives of false positives. Figure 11 visualizes our metric. We note that there are multiple approaches to calculating a metric per class - e.g we could also look at the accuracy for the class when looking at all examples of the protected group, which is why detail the specifics of our considered metric.

Alignment with traditional fairness metrics The difference in recall we measure is equivalent to *equality of opportunity*[41] - larger differences in recall are further from equality of opportunity. *Equalized odds*[41] is an extension of this with analysis of true negative rate. The largest difference between M and F for CLIP is retailers, where M has a 3.8 higher TNR than F, suggesting that F are over-predicted as retailers. The largest difference between F and M for clip is tennis player, with a 3.0 higher TNR for F than M, suggesting that M are over-predicted as tennis players.

A.5.3 Classification

Experimental Setup In order to have maximum control over the experiment, we evaluate classification models on photos in FACET that only contain one annotated person. By filtering out images with > 1 person, we are left with 21k images. We look at the per class disparities between two groups only if both groups have at least 50 examples. We analyze CLIP based on recall.

ImageNet21k Pretraining As FACET categories overlap with ImageNet classes, we can evaluate ImageNet21k trained models out of the box. We take the max score over the FACET classes from the ImageNet class predictions. Table 12 shows a comparison of performance discrepancies across perceived age group for CLIP ViT B/32 and a ViT B/16 pre-trained on IN21k from [79].

Architecture Choice

A.5.4 Person Detection

We use a pre-trained FasterRCNN with a ResNet50 FPN backbone pretrained on COCO for person detection.

	Person		CLIP	ViT B/	32	ViT B/16 IN21k						
	Class	#	Y	M	0	#	Y	М	0			
a	seller	1	57.5	72.8	86.2	9	47.2	53.4	59.3			
CLL	ballplayer	2	60.6	75.5	-	2	57.6	77.4	-			
or (guitarist	3	70.3	80.2	65.5	10	45.5	47.9	36.4			
h f	speaker	4	17.6	28.5	30.6	4	13.7	25.7	30.6			
5	laborer	5	49.0	52.7	61.7	3	48.1	52.9	66.0			
	painter	21	56.5	51.0	53.9	1	37.0	43.1	57.8			
ĿΝ	ballplayer	2	60.6	75.5	-	2	57.6	77.4	-			
for	laborer	5	49.0	52.7	61.7	3	48.1	52.9	66.0			
op.	speaker	4	17.6	28.5	30.6	4	13.7	25.7	30.6			
	guard	7	44.6	32.9	-	5	48.5	31.7	-			

Table 11: Per-class performance for CLIP and a ViT pretrained on ImageNet 21k. A subset of FACET classes are shown. The perceived age groups with the highest performance discrepancy per class are bolded. (Y is *young*, M is *middle*, O is *older*). The top five classes with the biggest discrepancies per model are shown. # corresponds to the rank for class in terms of magnitude of the discrepancy. Lower number indicates larger discrepancy. We note that most of the classes are in the both of the model's top 10 classes with the largest discrepancies, and 2 classes are in both models top 5. Recall for class and perceived age group pairings with less than 50 samples are not reported.

	Person		ResNe	et IN2	lk	ViT IN21k				
	Class	#	Y	М	0	#	Y	М	0	
	laborer	1	35.6	38.1	55.3	3	48.1	52.9	66.0	
et a	guard	2	49.5	30.5		6	48.5	31.7		
p fa sNi	painter	3	38.9	35.9	53.9	1	37.0	43.1	57.8	
R_{ℓ}	ballplayer	4	62.1	79.3		2	57.6	77.4		
	craftsman	5	67.2	78.4	81.8	12	74.6	78.7	81.8	
,	painter	3	38.9	35.9	53.9	1	37.0	43.1	57.8	
ΓiΛ	ballplayer	4	62.1	79.3		2	57.6	77.4	-	
for	laborer	1	35.6	38.1	55.3	3	48.1	52.9	66.0	
ob.	speaker	15	20.6	25.9	24.6	4	13.7	25.7	30.6	
L	guard	2	49.5	30.5		5	48.5	31.7	-	

Table 12: Per-class performance for a ViT and ResNet pretrained on ImageNet 21k. A subset of FACET classes are shown. The perceived age groups with the highest performance discrepancy per class are bolded. (Y is *young*, M is *middle*, O is *older*). The top five classes with the biggest discrepancies per model are shown. # corresponds to the rank for class in terms of magnitude of the discrepancy. Lower number indicates larger discrepancy. Recall for class and perceived age group pairings with less than 50 samples are not reported.

Additional Results Table 13 shows person detection results across perceived gender presentation and perceived age group.

Table 14 shows person detection results for a DETR[11] model with a ResNet50 backbone for perceived skin tone.

Demographic Group	mAR	$AR_{0.5}$	AR _{0.75}
perceived gender presentation			
- more stereotypically maleness	74.4	97.8	83.1
- more stereotypically femaleness	72.2	97.9	80.7
- outside of gender binary	71.2	97.9	76.8
perceived age group			
– younger	73.9	98.3	82.6
– middle	74.3	98.0	83.1
– older	74.8	98.5	84.5

Table 13: Average recall (AR) on FACET for a ResNet50 Faster R-CNN. Mean AR (mAR) averages across IoUs from 0.5 to 0.95 in increments of 0.05; $AR_{0.5}$ and $AR_{0.75}$ refer to IoU at 0.5 and 0.75.

Monk Skin Tone (MST)	mAR	AR _{0.5}	AR _{0.75}
1	85.4	99.0	93.3
2	84.6	98.8	92.1
3	84.4	98.7	91.6
4	84.2	98.6	91.3
5	84.0	98.6	91.2
6	84.0	98.7	91.2
7 📕	83.8	98.6	91.1
8	84.1	98.6	91.5
9	83.6	98.6	90.9
10	82.8	98.2	90.1

Table 14: Average recall (AR) on FACET for a ResNet50backbone DETR model. Mean AR (mAR) averages across IoUs from 0.5 to 0.95 in increments of 0.05; $AR_{0.5}$ and $AR_{0.75}$ refer to IoU at 0.5 and 0.75.

A.5.5 Person Segmentation

We use a MaskR-CNN[44] with a ResNet50 FPN backbone pretrained on COCO for person detection and instance segmentation. For this experiment, we only evaluate people in images if they have a mask annotated as person as well. This leaves us with 11k examples (people). For boxes, we compute the IoU of the predicted box to the humanlabeled bounding box in FACET. For masks, we compute the IoU of the predicted mask to the Segment Anythinggenerated, annotator verified, mask in Segment Anything 1 Billion (SA-1B) [59]. Annotators verified and labelled the mask as person, and were instructed only to do so if the mask was around the entire person (like bounding boxes in FACET). Annotators did not make any updates to the mask boundary.

A.5.6 Open World Detection

Experimental Setup We use Detic [102] for open world detection. We use DETIC trained on IN21-k with a SWIN-B backbone. For the CLIP embeddings, we use the prompt 'a person who is a {}' opposed to the 'a {}' used in the original paper. As we focus on recall, we do not use a confidence threshold for DETIC's predictions. Similarly we allow multiple class predictions per box. We take the 100 top predictions per image to compute AR.

Additional Results Table 15 shows the per class disparities for all classes for perceived age group.

A.5.7 Visual Grounding

We evaluated OFA [93]. For OFA, we used the pretrained version OFA_{large} in the HuggingFace Transformers library [95]; we did not perform any additional finetuning. We used beam-search with 5 beams, *top-p*=0.6 and limited the generation to a maximum of 100 new tokens. We prompted OFA with the input (e.g. "Which region does the text person class describe?"). Because OFA produces a single bounding box per class per prompt, we only evaluated images that contained no more than one person instance per person class. 7858 images were excluded because they contained multiple instances per class. We show the average recall across different IoUs and for different perceived age group labels in Table 15.

	mAR				$AR_{0.5}$	5		AR _{0.7}	'5		mAR			$AR_{0.3}$	5	$AR_{0.75}$		5
	<u>ಟ್</u>	dle	L	ŝ	dle	L.	<u>ಟ</u>	dle	L.	සු	dle	5	30	dle	÷	30	dle	L.
	Ino	nide	lde	Ino	nide	lde	Ino	nide	lde	Ino	nide	lde	Ino	nide	lde	Ino	nide	lde
	5	===	0	5	H	0	5		0	Ň	=	0	Š.	=	0	5	H	0
astronaut	64.0	70.2	-	80.0	85.3		60.0	73.7		0.0	30.3	11.5	0.0	51.4		0.0	32.9	-
ballplayer	45.4	42.1	29.8	55.5 46.7	51.7 49.2	55.5 62.6	47.4	44.0	55.5 63.6	/./	28.0	58.0	15.5	67.2	22.0	0.8	5.8 41.5	9.8
bartandar	45.0 91.7	45.4	01.0	40.7	46.5	03.0	43.8 82.2	40.9	03.0	45.9	38.0 12.5	50.0	12.1	25.0	100.0	50.0	41.5 92	80.0
basketball player	61.7	73.4 66 7	-	69.0	05.4 74 7	-	64.0	80.5 70.4	-	26.2	24.2	-	46.4	41 3	-	25.0	0.3 26 0	-
boatman	69.4	50.7	64.0	87 7	79.1	823	778	65.3	68.8	1.4	19	15	4 5	62	81	0.6	20.0	0.0
carpenter	67.9	64.8	81.7	71.4	73.5	91.7	71.4	68.9	87.5	0.0	2.4	0.0	0.0	5.6	0.0	0.0	2.2	0.0
cheerleader	13.3	12.7	-	15.6	13.5	-	14.8	12.6	-	20.0	12.0	-	41.9	20.0	-	16.1	15.0	-
climber	76.6	74.4	67.5	91.9	92.4	75.0	81.8	81.0	75.0	0.0	1.2	0.0	0.0	2.5	0.0	0.0	0.8	0.0
computer user	72.9	66.3	68.4	81.0	77.8	73.7	76.3	67.5	68.4	7.9	5.9	8.6	12.9	10.3	14.3	8.2	6.2	7.1
craftsman	44.5	47.0	56.9	48.6	52.1	61.9	44.8	48.3	58.6	33.8	39.1	40.7	55.2	62.6	66.9	37.9	45.7	47.6
dancer	77.2	71.1	75.6	91.4	85.4	87.5	83.7	77.5	78.1	37.6	32.0	24.3	68.8	55.7	57.1	39.0	37.1	28.6
disk jockey	77.2	68.4	-	82.1	78.8	-	79.1	72.5	-	3.5	3.8	-	6.8	6.5	-	4.1	3.0	-
doctor	74.6	77.4	75.7	86.2	88.7	81.0	76.6	79.8	78.6	33.6	30.9	38.0	55.2	52.1	60.8	40.2	33.6	45.1
drummer	19.9	26.3	34.2	24.9	34.7	41.8	19.7	27.6	35.8	5.0	3.8	0.7	9.2	8.1	1.7	4.6	3.3	0.0
electrician	56.3	51.4	48.6	62.8	62.5	57.1	62.8	54.4	57.1	0.0	1.2	0.0	0.0	1.6	0.0	0.0	1.6	0.0
farmer	81.5	81.1	85.4	95.9	96.6	99.1	86.9	88.4	93.0	6.2	5.0	6.6	12.8	9.9	13.7	5.1	4.4	5.5
fireman	86.3	76.4	76.4	96.2	90.1	85.7	90.4	82.6	85.7	14.0	14.7	22.0	26.7	32.9	60.0	13.3	12.5	20.0
flutist	32.1	40.5	51.0	35.4	47.5	54.8	35.4	43.7	54.8	15.0	10.5	11.7	31.8	19.9	20.8	9.1	9.9	12.5
gardener	82.3	78.6	86.8	98.3	94.7	100.0	90.0	84.4	97.3	11.9	18.3	27.9	32.6	40.1	58.1	7.0	14.6	24.2
guard	81.9	80.2	88.5	94.3	90.6	97.5	89.4	87.2	95.0	14.1	15.2	19.2	34.0	31.9	38.5	9.6	12.5	11.5
guitarist	/5.9	/9.3	79.5	90.5	93.7	95.1	80.0	84.4	80.3	19.8	19.6	32.0	38./	35.5	50.7	18.5	20.6	30.7
gymnast	01.1	83.3 70.4	70.0	90.2	95.0	02.0	92.4	89.9 70.0	- 07 7	15.0	0.5	12.1	19.1	24.2	22.5	9.0	9.1	147
horeomen	70.8	79.4 62.1	64.5	94.1	90.9 75 7	92.9	02.4	79.9 67.0	70.0	13.2	13.5	12.1	26.5	24.5	25.5	12.0	12.0 5.4	14.7
indae	25.7	31 3	28.3	28.6	35 3	33.3	28.6	338	33.3	13.4	14.5	0.0	50.5	25.0	0.0	5.0	3.4	0.0
laborer	75.3	73.1	74.4	88.4	85.8	86 1	799	78.9	799	23.1	21.9	28.9	44.0	46.2	58.6	22.0	17.4	243
lawman	71.5	70.1	67.1	79.0	77 7	74.3	75.5	74.6	70.6	20.2	21.9	20.5	42.0	43.1	46.2	18.3	18.8	21.5
lifequard	41.8	46.1	52.5	51.7	54.9	62.5	47.5	49.8	62.5	7.5	7.0	0.0	19.7	17.9	0.0	2.8	5.2	0.0
machinist	60.0	49.9	41.1	63.9	56.5	44.4	63.9	52.2	44.4	21.7	21.3	23.3	34.8	35.5	41.7	26.1	25.0	25.0
motorcyclist	57.9	52.7	51.9	81.6	78.2	69.2	60.9	54.2	57.7	21.9	15.5	19.2	50.0	37.0	37.5	12.3	9.6	20.8
nurse	83.4	81.5	81.7	95.6	93.9	91.3	90.5	86.1	82.6	31.8	24.8	34.5	52.2	43.6	50.0	37.2	26.0	40.0
painter	54.0	58.9	68.6	60.8	66.3	73.8	58.2	62.3	73.8	18.0	15.6	17.7	30.1	29.3	27.6	23.3	16.1	20.4
patient	64.1	66.9	67.1	87.0	85.6	86.5	65.6	69.2	68.3	28.5	26.5	26.6	50.3	47.6	45.2	29.7	27.6	28.0
prayer	82.8	83.0	85.2	96.0	95.2	95.2	89.0	89.5	89.5	0.0	2.7	2.8	0.0	5.5	4.3	0.0	1.8	2.9
referee	70.2	77.5	84.9	75.5	85.3	91.4	73.6	80.9	88.6	19.6	20.4	21.4	40.8	40.1	45.7	16.3	19.8	22.9
repairman	71.2	61.7	65.2	77.6	69.7	71.0	75.0	65.5	69.6	20.1	17.9	17.0	39.5	32.8	30.4	18.4	19.1	17.4
reporter	21.7	22.9	25.0	23.7	25.7	29.2	22.4	23.7	25.0	9.2	5.2	4.5	19.7	13.0	6.9	7.0	3.9	3.4
retailer	33.3	35.0	52.2	40.9	43.2	59.5	33.6	38.6	54.1	1.0	2.5	3.1	2.8	6.5	6.9	0.0	1.5	3.4
runner	90.9	85.9	91.1	99.2	95.2	100.0	97.7	90.6	100.0	7.5	8.3	0.0	21.6	21.1	0.0	3.9	4.7	0.0
sculptor	74.5	73.0	85.0	81.8	82.4	95.8	77.3	77.6	83.3	2.4	2.3	0.0	5.9	5.1	0.0	0.0	3.1	0.0
seller	/3.0	/3.2	74.5	87.4	87.0	88.5	82.0	/9.0	80.8	7.8	8.2	9.8	10.8	16.6	21.1	6.2	6.9	8.8
singer	80.0	80.9	85.0	88.8	88.2	90.1	85.0	85.5	88.2	5.1	3.9	1./	10.5	/.5	5.8	4.5	3.0	0.0
skateboarder	81 0	43.1	-	45.1	40.5	-	43.4	40.1	-	21.3	23.9 22.6	-	40.9	49./	-	18.8	22.1	-
soccer player	65 1	63 A	51.4	90.0 72.8	72.7	56.8	60.2 60.7	68 3	54.1	20.7	16.3	1.2	49.1	42.0	62	24.0	21.4 14.5	0.0
solulei	83.0	80.8	85.1	89.3	88 5	93 1	87.7	85.6	89 1	2.0	17	2.1	46	32	3.7	9.2 19	17.5	1.6
student	60.6	71 1	-	69.8	80.9	-	64.6	744	-	29.0	25.3	0.0	51.9	44 7	0.0	33.8	25.0	0.0
teacher	83.4	81.0	80.0	96.6	90.3	87 5	93.1	85.8	87 5	28.1	22.2	15.0	51.6	39.8	50.0	29.0	24.8	0.0
tennis plaver	94.2	93.8	-	98.9	98.9	-	97.2	97.8	-	32.5	33.8	-	60.0	62.2	-	32.7	34.4	-
trumpeter	22.8	29.5	38.4	26.7	34.8	45.5	25.6	31.4	38.2	5.3	5.1	3.6	11.6	10.3	5.1	2.3	5.7	5.1
waiter	76.2	77.6	-	92.4	92.9	-	83.3	82.5	-	5.2	4.2	_	10.4	8.6	_	4.2	4.0	_
avg	64.6	64.0	68.2	74.1	74.4	76.4	68.6	67.9	72.4	14.7	14.5	14.0	28.5	27.8	26.2	13.8	14.1	15.0
U				•			•						•					
	(a) Res	ults fo	r Detio	2								(b) Re	esults	for OF	A		

Table 15: The average recall (AR) results for Detic (detection) and OFA (visual grounding) across the 52 person-related classes for each perceived age group label. The highest recall numbers are bolded.

B. Data Card

We provide a data card for FACET, following the guidance of [48].

FACET

https://facet.metademolab.com

FACET is a large, publicly available evaluation set of 31,702 images for the most common vision problems - **image classification**, **object detection**, **segmentation**. People in FACET are annotated with person-related attributes such as **perceived skin tone** and **hairtype**, **bounding boxes** and labeled with fine-grained **person-related classes** such as *disk jockey* or *guitarist*.

	Overview						
Publisher	Meta AI Research, FAIR						
Authors	Laura Gustafson, Chloe Rolland, Nikhila Ravi, Quentin Duval, Aaron Adcock,						
	Cheng-Yang Fu, Melissa Hall, Candace Ross						
Contact	facet@meta.com						
Funding & Funding Type	Industry						
License	Custom license, see dataset download agreement						
Applications							
Dataset Purpose	Evaluate computer vision models to detect potential fairness concerns						
Key Application	Computer Vision, Fairness and Robustness						
Primary Motivations	Give researchers a tool to help understand model fairness. Allow researchers						
	to investigate how the demographic attributes of a person in the photo corre-						
	lates with model performance. FACET supports common vision tasks, with						
	annotations for classification detection, and segmentation.						
Intended Audience	Researchers aiming to detect potential fairness concerns and biases in their						
	trained vision models.						
Suitable Use Case	FACET is for evaluation only.						
	Data Type						
Primary Data Type	Images						
Primary Annotation Types	Manually gathered annotations for:						
	Bounding boxes						
	• Category labels for the bounding boxes						
	• A series of demographic, robustness, and additional attributes for the per- son in the bounding box.						
	• Manually annotated labels for mask from Segment Anything 1 Billion (SA-1B) [59]. This masks were automatically generated by the Segment Anything Model (SAM).						

FACET Data Card								
Data SnapShot								
	• 31,702 images							
	• exhaustive annotations for 49,551 people							
	 exhaustive annotations for 49,551 people 52 categories for people that include occupations, athletes, artists, etc 13 attributes annotated for person including demographic attributes such as <i>perceived gender presentation</i> robustness annotations such as <i>lighting condition</i> and additional attributes such as <i>hair color</i> 							
	• 13 attributes annotated for person including demographic attributes such as <i>perceived gender presentation</i> robustness annotations such as <i>lighting condition</i> and additional attributes such as <i>hair color</i>							
	• 3 mask labels <i>person, clothing, hair</i> for masks. Masks and mask labels are not exhaustive. 17k people in 14k images have labelled masks. Additional unlabeled masks from SA-1B are compatible with FACET.							
Data Sources	Images come from SA-1B[59].							

FACET Data Card									
Annotation format	JSON files of COCO formatted annotations for the bounding boxes and masks are provided. A CSV containing the annotations per person is be provided. Each item in the annotation file contains:								
	1. Reference information:								
	• filename								
	• person_id: unique integer representing the annotation								
	2. Task information:								
	• class1: This is the primary category the person matches. <i>Cannot be None</i> .								
	• class2: This is the secondary category the person matches. <i>Can be None.</i>								
	• bounding_box: Person bounding box.								
	• masks: Each item will contain the category and mask. Category will be one of person, hair, clothing. There are not masks for every person/image.								
	3. Demographic Attribute annotations.								
	 perceived gender presentation : All of the following annotations will given in a binary fashion: [with_more_femaleness, with_more_maleness, nonbinary_presentation, gender_presentation_unknown] 								
	• perceived skin tone : Each annotators annotations are considered per MST in a binary fashion. Annotations from all annotators are summed into a single value per MST, so the value at MST_i may be greater than 1. Values will be given for all of the following: $[MST_1, \ldots, MST_{10} \text{ apparent_skin_tone_unknown}]$								
	 perceived age group : all of the following annotations are included in a binary fashion: [young, middle, older, age_presentation_unknown] 								
	4. Additional Attribute information: All binary values.								
	 hair color: [black_hair, red_hair, blonde_hair, brown_hair, colored_hair, grey_hair, hair_color_unknown] 								
	 hair type: [wavy, curly, coily, straight_hair, bald, dreadlocks, hair_type_unknown] 								
	• <i>other items:</i> [eyewear, headscarf, tattoo, cap, facial_hair, mask]								
	5. Robustness Annotations: All binary values.								
	 <i>lighting condition:</i> [lighting_unknown, overexposed, underexposed, well_lit, dimly_lit] 								
	• <i>visibility:</i> [minimal_visible, torso_visible, face_visible]								

C. FACET CrowdWorkSheets

To further describe our annotation process, we answer the questions posed in CrowdWorkSheets[21].

C.1. Task Formulation

At a high level, what are the subjective aspects of your task? Annotating the *perceived* attributes of a person is by nature subjective. For perceived skin tone we expected the annotations would be subjective and have high variance. To account for this, we gather annotations from three annotators and release the cumulative results of all three. For subjectivity across the other attributes and labeling classes, we provided annotators with diverse representations of each attribute or class in the guidelines to try to minimize annotator bias.

What assumptions do you make about annotators? How did you choose the specific wording of your task instructions? What steps, if any, were taken to verify the clarity of task instructions and wording for annotators? To qualify for the annotation task, annotators had to pass a strong English requirement. For the annotation of perceived skin tone only, we had a more lenient English requirement to increase the diversity of the annotators, and additionally translated the annotation instructions into Spanish.

As we were annotating images, we provided visual examples for all of the annotations and classes. We sourced multiple examples per attribute (e.g brown hair) and class (e.g doctor), with at least one example for someone with more stereotypical maleness with the attribute and someone with more stereotypical femaleness with the attribute. For classes, we sourced multiple examples of someone who would qualify for a given class (*e.g for dancer we sourced images of both a ballerina and a break-dancer*). For given examples for the Monk Skin Tone scale, we sourced four examples per MST value, and attempted to capture some of the diversity within a specified MST value.

What are the precise instructions that were provided to annotators? The goal of the project is to build a dataset that helps determine if Computer Vision models have biases based on the apparent attributes of the person in the photo. We are creating an image classification dataset that also contains labels of the apparent protected attributes of the people in the image. The dataset is for evaluation only, and is to help better analyze and detect potential biases. The protected attributes will not in any way be used for training a model. We are not collecting any biometric information about the people in the photos.

1. **Target category classification:** Given an image, and a target category, we aim to determine if the image is

a good representation for the category. The annotators will mark whether or not there is a person in the photo matching the category, and if so if there are ≤ 5 people who match this category. The categories will be all people related - such as doctor, soccer player, etc. Multiple images will be shown per task to annotate. The default response will be 'No person matches this category'.

- 2. Bounding boxes and classification labels for people: Given an image, draw bounding boxes around all people who match any of the list of categories. For each bounding box around a person, mark which category they belong to. If they belong to multiple categories, you should mark the second category under 'secondary category'.
- 3. **3. Apparent skin tone annotations** Given an image, with a bounding box around a person, annotate the person's apparent skin tone. You may select as many skin tones from the list as you feel appropriate. If it is not possible to tell the skin tone from the photo, please mark cannot be determined. Please select at least two values for the skin tone, and make sure that the values that you select are consecutive. If it is too hard to determine the annotation, mark the values it appears and cannot be determined. Zoom in (option + mouse scroll) as necessary in order to determine the skin tone.
- 4. **4. Apparent attribute annotations** Given an image, with a bounding box around a person, annotate the given apparent attributes of the person. For each category, see the examples given. If it is not possible to determine the attribute from the photo, please mark cannot be determined. Apparent lighting condition is on the person: Please indicate how the lighting is with respect to the person in the bounding box. If the lighting is between two categories, mark both.

C.2. Selecting Annotations

Are there certain perspectives that should be privileged? If so, how did you seek these perspectives out? No. N/A

Are there certain perspectives that would be harmful to include? If so, how did you screen these perspectives out? Harmful perspectives would include annotators who had a clear bias in their annotations. We screened these perspectives out by using training, and only including production raters who had high accuracy on the training set. Annotators with consistent bias would likely not have been able to get a high enough accuracy on the training to graduate. Were sociodemographic characteristics used to select annotators for your task? If so, please detail the process. If you have any aggregated sociodemographic statistics about your annotator pool, please describe. Do you have reason to believe that sociodemographic characteristics of annotators may have impacted how they annotated the data? Why or why not? We sourced geographically diverse annotators from the following 7 countries during our annotation process: United States, Philippines, Egypt, Colombia, Taiwan, Spain and Kenya. The breakdown of annotators per region is shown in Figure 4 in the main text.

If you have any aggregated socio-demographic statistics about your annotator pool, please describe. Do you have reason to believe that sociodemographic characteristics of annotators may have impacted how they annotated the data? Why or why not? Other socio-demographic statistics about our annotator pool were not available.

Consider the intended context of use of the dataset and the individuals and communities that may be impacted by a model trained on this dataset. Are these communities represented in your annotator pool? The FACET benchmark is to be used for evaluation purposes only. The underlying images in FACET are geographically diverse. To incorporate geographic diversity into our annotation process, we sourced annotators from 7 countries across regions.

C.3. Platform and Infrastructure Choices

What annotation platform did you utilize? At a high level, what considerations informed your decision to choose this platform? Did the chosen platform sufficiently meet the requirements you outlined for annotator pools? Are any aspects not covered? We used a proprietary annotation platform.

What, if any, communication channels did your chosen platform offer to facilitate communication with annotators? How did this channel of communication influence the annotation process and/or resulting annotations? For Stage 2 (drawing and labeling bounding boxes for person classes), labelers' annotations were compared to a golden set and were required to achieve IoU above 85% to pass. After these training stages, annotations were manually reviewed and the annotators were given feedback for improvement. Following this, if annotators had high quality labels when spot-checked, they graduated to annotating images for the final benchmark.

We provided annotators individualized feedback during their training for drawing bounding boxes on a daily basis. Our vendor communicated to annotators common types of mistakes that we witnessed during training, and the corresponding corrections. We provided annotators individualized feedback during their training for drawing bounding boxes. Our vendor communicated to annotators common types of mistakes that we witnessed during training, and the corresponding corrections.

How much were annotators compensated? Did you consider any particular pay standards, when determining their compensation? If so, please describe. Annotators were compensated with an hour wage set per country.

C.4. Dataset Analysis and Evaluation

How do you define the quality of annotations in your context, and how did you assess the quality in the dataset you constructed? For each task, annotators were first placed into training for the task. They were asked to annotate a large number of examples per task. We hand annotated the same examples, and using our annotations as the ground truth measured the accuracy per annotator. Annotators were graduated from training when their accuracy reached above a given threshold. For the task requiring annotators to draw bounding boxes around people, annotators were only graduated after we manually spot checked the annotator's bonding boxes to ensure quality. During the perceived skin tone annotation task, we asked annotators if they agreed with the class label, and grade the quality of the given bounding box. If one of the three annotators disagreed with the class label or bounding box, the annotation was removed, and the image added to the queue of images for task 2 (drawing bounding boxes).

Have you conducted any analysis on disagreement patterns? If so, what analyses did you use and what were the major findings? We pointed out common mistakes during weekly meetings with the vendor. While in training, we noticed consistent mistakes among annotators that we corrected before graduation. The most common mistake was around drawing the bounding boxes: many annotators during training would draw bounding boxes that included objects the person was holding *e.g guitar*. With the weekly meetings and individualized feedback, we were able to address this.

How do the individual annotator responses relate to the final labels released in the dataset? For perceived skin tone only, we sourced three annotations per person in the dataset. We release the annotations from all three annotators, giving a distribution over perceived skin tone per person in the dataset. We believe that a distribution more accurately describes a person's perceived skin tone than a single value.

C.5. Dataset Release and Maintenance

Do you have reason to believe the annotations in this dataset may change over time? Do you plan to update your dataset? At this time we do not plan to have updates for this dataset. We will allow users to flag any images that may be objectionable content, and remove objectionable content if found.

Are there any conditions or definitions that, if changed, could impact the utility of your dataset? The FACET benchmark contains examples for many different types of professions, athletes, artists, etc. If over time the way these occupations look shifts, this could impact the dataset. As a concrete example, there are a number of images in the dataset that were taken since the beginning of the COVID-19 pandemic. Many doctors and nurses in the dataset are wearing much more PPE than in images of doctors and nurses from before the COVID-19 pandemic.

Will you attempt to track, impose limitations on, or otherwise influence how your dataset is used? If so, how? The FACET benchmark is for evaluation purposes ONLY. Using FACET annotations for training is strictly prohibited. Users must agree to the terms of use before downloading the dataset.

Were annotators informed about how the data is externalized? If changes to the dataset are made, will they be informed? No. No.

Is there a process by which annotators can later choose to withdraw their data from the dataset? If so, please detail. No.

D. Fine-grained dataset statistics

		FACET Class Statistics															
		Perce	vived Ge esentation	nder on				Per	ceived S	Skin Tor	ne				Per	ceived A Group	Age
Person Class	Total	stereotypical maleness	stereotypical femaleness	non-binary presentation	1	2	3	4	5	6	7 🔳	8 🔳	9 🔳	10	younger	middle	older
lawman laborer boatman guard backpacker basketball player tennis player farmer soldier singer dancer speaker motorcyclist repairman seller ballplayer guitarist computer user soccer player craftsman nurse drummer skateboarder	4609 3030 2147 1851 1738 1680 1663 1632 1561 1518 1475 1470 1468 1475 1470 1342 1316 1279 1267 1233 1127 1124 1000	3768 2208 1074 1597 1006 1479 1058 823 1336 1013 510 1119 822 1187 699 1145 1115 597 1102 785 322 744 818	403 378 742 121 458 134 488 539 75 428 812 282 302 54 282 302 54 533 62 87 322 34 220 535 162 88	$\begin{array}{c} 3\\1\\5\\4\\4\\2\\0\\1\\0\\14\\10\\1\\4\\1\\6\\1\\3\\2\\1\\4\\3\\3\\1\end{array}$	560 112 137 306 167 307 147 50 204 240 207 152 255 65 74 104 138 75 115 113 75 115 215 265 74 240 207 152 255 74 240 204 240 207 152 255 74 240 204 240 204 240 255 74 240 255 74 240 265 74 240 265 74 240 265 74 240 265 74 240 265 74 240 265 74 240 265 74 255 74 747 755 755 747 747 755 755 747 747	2363 577 741 1045 771 869 805 208 766 824 644 789 384 464 789 384 4678 641 521 321 368 421 321	2881 887 991 1208 1010 991 1152 335 892 1013 863 1093 518 681 555 743 843 818 692 467 505 534 635	2642 1171 995 1047 951 1262 466 802 931 798 1050 583 815 705 781 816 785 781 816 785 781 816 785 781 816 785 761 816 785 761 816 785 761 816 816 816 816 816 816 816 816 816 8	1825 1171 794 714 7632 1002 635 578 677 716 755 539 753 757 635 596 608 559 631 529 388 463	1215 1269 573 470 475 461 617 816 463 399 431 392 478 676 642 473 330 358 364 627 399 331	615 844 2266 193 234 681 281 184 214 8249 373 379 254 246 576 246 576 246 577 246 577 246 577 246 577 246 577 246 577 246 577 246 577 247 247 247 247 247 247 247 247 247 2	322 508 134 119 93 359 126 450 130 140 113 92 104 150 192 168 73 71 126 210 86 62 50 62	166 291 291 86 62 50 332 90 216 66 93 67 49 59 60 74 112 50 34 128 92 27 99 37	74 136 31 27 28 165 57 87 22 46 26 25 22 28 28 28 51 26 12 6 12 6 36 6 4 22 76 36	387 297 482 317 361 492 330 129 237 357 567 134 213 256 205 214 233 258 322 117 169 256 360	3151 1643 906 1181 842 1056 1081 844 972 984 644 987 577 836 644 987 577 836 758 834 802 449 732 599 547 530 465	144 193 147 48 53 3 6 227 39 89 32 207 56 78 89 32 207 56 78 81 84 12 116 24 5 188 24 68
skateboarder painter fireman patient horseman doctor prayer referee student runner gymnast retailer climber trumpeter lifeguard electrician gardener reporter	983 933 896 884 861 810 776 747 654 635 561 551 530 529 505 499 505	818 590 674 408 491 361 444 694 379 469 252 296 355 451 398 415 266 302	88 251 34 275 290 313 265 38 247 117 316 234 92 36 62 7 173 145	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 3 \\ 1 \\ 0 \\ 2 \\ 3 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	82 77 68 75 152 86 58 88 92 88 116 53 59 63 20 9 45 75	468 318 270 280 538 343 223 417 241 320 348 198 231 308 160 100 187 281	635 460 358 389 592 450 307 539 322 415 424 301 306 336 232 140 257 324	650 530 391 472 484 462 355 547 365 379 366 298 301 304 286 188 265 269	463 506 237 486 287 410 394 374 367 291 322 298 251 212 229 182 235 204	281 420 192 444 127 284 357 186 316 126 145 196 155 145 186 175 197	$\begin{array}{c} 136\\ 246\\ 77\\ 242\\ 54\\ 145\\ 195\\ 80\\ 163\\ 45\\ 43\\ 90\\ 73\\ 74\\ 103\\ 101\\ 108\\ 50\end{array}$	62 123 22 102 26 69 99 38 93 23 28 41 26 41 52 52 56 18	37 56 10 41 12 21 51 23 62 27 17 14 13 37 28 35 33 13	$ \begin{array}{r} 14 \\ 22 \\ 7 \\ 16 \\ 5 \\ 6 \\ 18 \\ 10 \\ 26 \\ 16 \\ 6 \\ 5 \\ 8 \\ 18 \\ 8 \\ 9 \\ 16 \\ 6 \\ 5 \\ 8 \\ 18 \\ 8 \\ 9 \\ 16 \\ 6 \\ 5 \\ 8 \\ 18 \\ 8 \\ 9 \\ 16 \\ 6 \\ 5 \\ 8 \\ 18 \\ 8 \\ 9 \\ 16 \\ 6 \\ 5 \\ 8 \\ 18 \\ 8 \\ 9 \\ 16 \\ 6 \\ 6 \\ 5 \\ 8 \\ 9 \\ 16 \\ 6 \\ 6 \\ 6 \\ 5 \\ 8 \\ 9 \\ 16 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 16 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 16 \\ 6 \\ 6 \\ 6 \\ 7 \\ $	360 168 55 131 181 107 104 54 319 134 300 114 107 89 118 47 66 77	465 435 512 368 512 441 358 584 264 403 233 332 261 316 273 270 245 302	1 129 14 127 22 43 124 35 5 5 19 2 39 4 56 8 9 79 24
hairdresser machinist cheerleader waiter disk jockey flutist astronaut carpenter sculptor teacher judge bartender	461 413 410 350 318 312 289 268 240 216 101 57	342 329 78 204 228 247 165 230 187 116 67 37	85 30 314 109 27 41 14 7 21 76 28 14	3 0 0 1 1 0 0 0 0 0 1 0 0 0	73 32 33 77 34 43 38 15 11 10 28 11 5	143 173 191 184 162 152 72 82 76 104 50 27	209 223 292 245 200 192 89 124 104 141 76 42	209 257 252 268 220 194 184 78 147 120 142 71 36	204 242 191 205 177 127 154 58 129 107 108 44 29	110 237 168 88 120 77 118 18 131 107 76 21 19	145 89 38 51 37 77 2 87 78 36 6 7	75 34 18 24 27 43 0 52 50 16 3 3	13 35 20 12 18 20 16 0 25 24 10 1 1	4 17 7 3 7 10 4 2 9 5 4 0 1	69 42 246 68 67 50 5 20 24 31 8 7	302 294 241 117 224 167 189 158 160 144 150 71 41	24 43 20 5 7 2 32 2 27 27 9 12 1

Table 17: Number of people for each person class and demographic group in FACET.

FACET Mask	Statist	ics	
	person	clothing	hair
perceived gender presentation			
with stereotypical maleness	6608	32103	3788
with stereotypical femaleness	4127	18136	3346
non-binary presentation	50	223	36
cannot be determined	72	193	13
perceived skin tone			
MST 1	2198	10687	1389
MST 2	5154	24328	3496
MST 3	6121	28825	4263
MST 4	5651	26583	3889
MST 5	4849	22738	3349
MST 6	3816	17931	2452
MST 7	2542	11845	1544
MST 8	1619	7564	922
MST 9	1216	5727	666
MST 10	521	2481	293
cannot be determined	2839	11844	1611
perceived age group	2007	11011	1011
vounger	4145	19440	3107
middle	5//3	25458	3310
older	113/	5352	733
cannot be determined	134	405	24
	155	405	24
Hair color	4052	10127	2222
	4055	18137	3323
brown	2720	12205	2207
blonde	1024	4633	952
red/orange	148	6/4	130
colored	84	340 2510	96
grey	/4/	3519	229
cannot be determined	2885	14863	485
Hair type			
wavy	2090	9526	1897
curly	241	1141	253
straight	5141	22109	4395
coily	178	750	158
dreadlocks	113	522	109
bald	265	1167	81
Unknown	3626	19129	905
Additional attribute			
eyeware	1509	6993	957
headscarf	665	3634	256
tattoo	184	926	143
cap	3305	18209	797
facial hair	1511	7382	963
mask	591	3271	377

Table 18: Number of masks per type per demographic and additional attributes in FACET. For perceived skin tone, hair color, hair type, and additional attributes a person in FACET can be marked with multiple values, so the sum of the masks over the group of attributes greater than the total number of masks.