
Supplementary Material for
Deep geometry-aware camera self-calibration from video

Annika Hagemann1,2, Moritz Knorr1, Christoph Stiller2
1Bosch Research, Germany 2Karlsruhe Institute of Technology

{annika.hagemann, moritzmichael.knorr}@de.bosch.com, stiller@kit.edu

A. Derivation of the intrinsics Jacobian
The optimization in the self-calibrating bundle adjust-

ment layer requires the Jacobian of optimization residuals
w.r.t. poses, depth and intrinsics. The Jacobians w.r.t. poses
and depth were derived in [11]. In the following, we derive
the Jacobian w.r.t. the intrinsics. The optimization residuals
are given by

rij = u∗
ij − π(Gij ◦ π−1(ui, zi,θ),θ), (1)

where ui denotes the image coordinates in image i and u∗
ij

denotes the measured correspondences. Gij ∈ SE(3) de-
notes the relative camera pose, zi denotes the depth, and
θ are the intrinsic camera parameters. The function π de-
scribes the projection from 3D to the image, and π−1 the
inverse projection.

As (1) contains direct and indirect dependencies of θ,
we define xij(θ) := Gij ◦ π−1(ui, zi,θ) and obtain the
Jacobian w.r.t. θ by using the total derivative:

drij
dθ

= − d

dθ
π(xij(θ),θ) (2)

= −∂π(xij ,θ)

∂xij

dxij(θ)

dθ
− ∂π(xij ,θ)

∂θ
(3)

To obtain dxij(θ)
dθ , we further re-write the pose transforma-

tion Gij in terms of a rotation matrix Rij and a translation
vector tij , so that xij(θ) = Rijπ

−1(ui, zi,θ) + tij . We
then get

dxij(θ)

dθ
= Rij

dπ−1(ui, zi,θ)

dθ
(4)

Substituting this expression in (2) gives

drij
dθ

= − ∂π(xij ,θ)

∂xij︸ ︷︷ ︸
(A)

Rij
dπ−1(ui, zi,θ)

dθ︸ ︷︷ ︸
(B)

− ∂π(xij ,θ)

∂θ︸ ︷︷ ︸
(C)

.

(5)

This general expression holds independent of the choice of
the camera model. The terms (A), (B), (C), however, must
be determined specifically for the given projection function.

For a pinhole camera model, for instance, projection and
inverse projection are given by

π(x,θ) =

[
fx

x
z + cx

fy
y
z + cy

]
and π−1(u,θ, z) = z

px−cx

fx
py−cy

fy

1

 .

(6)

where x = (x, y, z)T is a 3D point, u = (px, py)
T is an

image point, (cx, cy) is the principal point and fx, fy are
the focal lengths. By computing the individual derivatives,
we obtain the following terms:

∂π(xij ,θ)

∂xij
=

[fx
zij

0 −fx
xij

z2
ij

0
fy
zij

−fy
yij

z2
ij

]
(7)

dπ−1(ui, zi,θ)

dθ
=

−zi
px−cx

f2
x

0 − zi
fx

0

0 −zi
py−cy

f2
y

0 − zi
fy

0 0 0 0

(8)

∂π(xij ,θ)

∂θ
=

[
xij

zij
0 1 0

0
yij

zij
0 1

]
(9)

These matrices can be substituted in Eq. (5) to obtain the
overall Jacobian of the residuals w.r.t. the pinhole intrinsics.

B. Application on YouTube videos
As self-calibration enables performing 3D perception

tasks without any knowledge about the camera, we ap-
plied DroidCalib on exemplary YouTube videos. From the
YouTube8M dataset [1], we manually selected videos taken
by a moving camera and extracted video snippets that did
not contain any cuts. As all videos contained lens distor-
tion, we used DroidCalib with UCM, initialized with naive
intrinsics θ0. The resulting reconstructions are shown in
Fig. S1. Although a quantitative evaluation is not possible
due to lack of ground-truth, the reconstructions are visually
consistent (e.g. right angles, straight lines).

(c)(b)

(a)

Top-view of a MAV moving
through a ruin

Handheld camera in graffiti exhibition

Castle

Figure S1. Qualitative results on YouTube videos. Cyan pyramids
show the reconstructed camera poses. YouTube8M IDs are mHQ5,
RB1V, TnVx, to obtain the associated video links, use YouTube8M.

C. Effect of different training setups
To investigate the effect of the specific training setup on

the calibration accuracy, we compare the calibration accu-
racy achieved with four different setups (Fig. S2):

1. Weights A are the weights obtained through training
with SC-BA layer, exposing the model to random ini-
tial intrinsics errors ∆θ during training, and using a
dedicated intrinsics loss Lθ. These are the weights
used for all main analyses.

2. Weights B are obtained through training with SC-BA
layer, including random initial intrinsics errors ∆θ,
but without explicit intrinsics loss Lθ.

3. Weights C are obtained through training with SC-BA
layer, without explicit intrinsics loss Lθ, and without
exposing the model to random initial intrinsics errors
∆θ during training.

4. Weights D are the pre-trained weights from DROID-
SLAM [11], obtained through training with the origi-
nal BA layer, and without exposing the model to ran-
dom initial intrinsics errors ∆θ during training. The
SC-BA layer is thus only integrated at inference time.

Evaluation is performed on validation sequences from
the TartanAir dataset1, using naive initial intrinsics θ0,
and using random sequence snippets of different length
(Fig. S2). The results suggest that for sufficiently long se-
quences (NI = 500), all training setups result in high cali-
bration accuracy. Even the weights obtained through train-

1Sequences neighborhood/Easy/P021, abandonedfactory/Hard/P011,
office/Hard/P007, westerndesert/Easy/P013, gascola/Hard/P009.

Figure S2. Comparison of different training setups depending on
the length NI of the input sequence. Evaluation is performed
on random sequence snippets from the TartanAir validation se-
quences. Barplot shows average mapping error and 95% bootstrap
confidence intervals across sequence snippets.

ing for pose estimation only (weights D) yield accurate in-
trinsics when combined with the SC-BA layer at inference
time. For short sequences (NI = 50), however, the re-
sults obtained with the different training setups differ. The
model weights obtained through training with SC-BA layer
(weights A-C) result in higher calibration accuracy than the
weights obtained through training without SC-BA layer (i.e.
the pre-trained weights D). Furthermore, Fig. S2 indicates
that the intrinsics loss Lθ, and the exposure to intrinsics er-
rors ∆θ during training are beneficial for the calibration
accuracy on short sequences. Overall, this suggests that
for long sequences, calibration is little sensitive to modi-
fications in the training setup, whereas for short sequences,
a dedicated intrinsics training improves the convergence to
accurate intrinsics.

D. Performance depending on sequence length
We analyzed calibration accuracy, runtime and memory

consumption depending on the length of the input sequence.
To this end, we applied DroidCalib on random sequence
snippets of different length (Fig. S3). For TartanAir and Eu-
RoC, a mapping error below 1 pixel is achieved even with
short sequences, containing less than 200 images. Then,
the median peak memory consumption is between 7 GB
and 10 GB and the computation time is below two min-
utes. For the more difficult TUM sequences, the mapping
error remains at a higher level, even for sequences contain-
ing 900 images. This indicates that it is difficult to compen-
sate the quality of a sequence (amounts of artifacts, amount
and diversity of camera motion, structure in the scene) with
a larger quantity of images.

E. Additional details on the baseline evaluation
DroidCalib and DROID-SLAM DroidCalib builds

upon the DROID-SLAM [11] open source implementation
(https://github.com/princeton-vl/DROID-SLAM, commit

https://research.google.com/youtube8m/video_id_conversion.html

Method ME (pixel) Runtime Failures

COLMAP sequential 9.69 [2.42, 24.95] 2 min [1 min, 6 min] 4 / 9
COLMAP exhaustive 4.26 [2.46, 6.89] 2 h 19 min [46 min, 2 days 18 h 15 min] 0 / 9
COLMAP+NetVLAD 6.54 [2.52, 52.1] 4 min [2 min, 36 min] 0 / 9
COLMAP+NetVLAD+Superpoint+Superglue 4.10 [1.66, 8.09] 13 min [5 min, 51 min] 2 / 9

Table S1. Results of the COLMAP-based approaches on the TUM dataset, using different hyperparameters. We report median [min, max]
over all converged sequences of the respective method. Failed sequences are only excluded from the method with the failure; not from all
sequences. In general, there is a trade-off between runtime and accuracy. Although exhaustive matching leads to most accurate results, the
runtime takes up to several days. In the main paper, we report COLMAP+NetVLAD and COLMAP+NetVLAD+Superpoint+Superglue,
as they provide a balance between accuracy and runtime. For this supplementary analysis, we only used the TUM dataset, as it contains
the shortest sequences and therefore enabled the evaluation of exhaustive matching.

Figure S3. Calibration accuracy, runtime and peak memory con-
sumption of DroidCalib depending on the number of input images.
Plots show median values and 95% bootstrap confidence intervals
on random sequence snippets of different length, with ∆θ = 25%.

8016d2b9b72). A full estimation consists of (i) running
the frontend until all images of the sequence have been
registered, (ii) running a total of 19 iterations of the back-
end, and (iii) running a motion-only bundle adjustment to
estimate the poses of all images that had not been selected
as keyframes. DroidCalib performs the self-calibrating
bundle adjustment in both, frontend and backend. We
did not tune any hyperparameters of the SLAM system
specifically for DroidCalib, but used the values proposed
in DROID-SLAM for evaluating both, DROID-SLAM
and DroidCalib. For DROID-SLAM, we found that the
reproduced ATE values deviate slightly from the published
values, though not systematically. We report the repro-
duced rather than the published values so that differences
to DroidCalib can be fully attributed to the SC-BA layer.

Target-based calibration We used the calibration
datasets provided in the EuRoC and the TUM datasets. Both
datasets contain more than 500 images of a checkerboard
target, captured using different relative poses between cam-
era and target. To assess the accuracy of target-based cal-

ibration, we randomly sampled calibration datasets of dif-
ferent sizes (20, 50 and 100 images) from the available
checkerboard images and performed an undistortion using
the reference intrinsics. Thereby, only pinhole intrinsics
must be estimated during calibration, giving a fair compar-
ison with the corresponding DroidCalib results. We used
a corner detection algorithm [9] to detect the image coor-
dinates of the checkerboard corners. Following Zhang’s
method [12], we then used the direct linear transform to
obtain initial values for the target poses and estimated the
intrinsics by minimizing the reprojection error

ϵ2res =
∑
ν∈F

∑
c∈C

||ucν − π(Gν ◦ xc,θ)||2, (10)

where F denotes the set of calibration images, C denotes
the set of visible checkerboard corners, ucν are the detected
image coordinates of checkerboard corners, xc are the 3D
coordinates of the checkerboard corners w.r.t. the board
coordinate system, and Gν is the relative pose between
board and camera in image ν. To reduce the impact of
potential outliers, the error terms are weighted with a
Cauchy kernel, and optimization is performed using the
Levenberg Marquardt algorithm.

COLMAP-based approaches We used COLMAP 3.8
and hloc version 1.1 [8] and activated the estimation of all
intrinsics during reconstruction. We used the same image
sizes as for DroidCalib (see main paper) and we did not skip
any frames. In the default setup, we used SIFT [6] feature
extraction and performed feature matching using the near-
est neighbor ratio configuration from hloc [8]. For feature
extraction with Superpoint [3], we used the trained model
from the InLoc dataset [10], as provided in hloc [8].
The performance of COLMAP-based approaches depends
on the image pairs considered during feature matching and
there is a trade-off between accuracy and runtime. Tab. S1
shows the the calibration accuracy using different possible
configurations, including sequential matching with a win-
dow of five images, NetVLAD and exhaustive matching.

Dataset Setting ME (pixel) Runtime

TartanAir
50 epochs 18.3 [5.0, 60.1] 28 min
350 epochs 14.9 [2.95, 64.8] 3 h 08 min
full dataset 3.52 [–, –] 5 h 36 min

EuRoC
50 epochs 27.6 [14.0, 56.2] 53 min
350 epochs 24.1 [11.1, 47.4] 6 h 11 min
full dataset 6.48 [–, –] 8 h 19 min

TUM
50 epochs 29.7 [17.6, 44.5] 25 min
350 epochs 24.7 [16.2 , 63.6] 3 h 35 min
full dataset 4.31 [–, –] 2 h 51min

EuRoC raw
50 epochs 10.8 [1.63, 47.9] 53 min
350 epochs 10.7 [1.81 , 55.9] 6 h 05 min
full dataset 2.24 [–, –] 8 h 27min

Table S2. Results of SelfSup-Calib [4] using different settings.
We report median [min, max] over all sequences in the respective
dataset. For the ”full dataset” setting we report the single result
obtained from training 50 epochs jointly on all sequences.

SelfSup-Calib We used the author’s implementation
to evaluate the method [4]. We left all hyperparameters
untouched and we chose the unified camera model. The
parametrization of the unified camera model in [4] is
slightly different from the parametrization in [7], however,
both parametrizations are mathematically equivalent and
can be converted into each other (see [4]). As proposed
in [4], the EuRoC images were resized to an input size of
256 × 384. As the TUM dataset and the TartanAir dataset
were not evaluated in the original work, we used the same
hyperparameters.
The work originally trained jointly on multiple EuRoC
sequences. To obtain per-sequence results, we trained on
the individual sequences. We also tried to compensate for
the lower number of optimization steps by increasing the
number of epochs from 50 to 350 (Tab. S2). This leads to
slightly higher accuracy, but comes at the cost of a signifi-
cant increase in the computation time. We further evaluated
the method when training jointly on all sequences in the
respective dataset (Tab. S2). This significantly increases
the calibration accuracy, indicating that the method benefits
from larger datasets and longer training times, as compared
to the single-sequence setup assessed in this work.

On the choice of baseline methods Besides [4], the ap-
proaches in [5, 2], also use a CNN-based architecture to
regress poses and depth from unknown cameras, and train
in a self-supervised manner using a photometric loss. How-
ever, while [4] learns the intrinsics of the training data,
[5, 2] infer intrinsics on a two-image basis, which is much
more challenging, so that accuracy is by design expected to
be lower (this is supported by Fig. 9 in [5]). In one experi-
ment, [5] additionally learns the intrinsics, which we expect
to yield similar accuracy as [4], because it relies on the same
principle and only differs in the exact model architecture
and the choice of the camera model. Among the two, we de-
cided to use [4] as a representative approach, as it provides
complete source code. In general, it must be noted that

there are no well-established benchmark datasets and met-
rics to compare different self-calibration approaches. We
thus hope that our work is a step towards establishing such
a benchmark.

F. More detailed experimental results

Tabs. S3-S5 contain the per-sequence results of the ex-
periments shown in the main paper.

References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan, and
Sudheendra Vijayanarasimhan. Youtube-8m: A large-
scale video classification benchmark. arXiv preprint
arXiv:1609.08675, 2016. 1

[2] Yuhua Chen, Cordelia Schmid, and Cristian Sminchis-
escu. Self-supervised learning with geometric constraints in
monocular video: Connecting flow, depth, and camera. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7063–7072, 2019. 4

[3] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages
224–236, 2018. 3

[4] Jiading Fang, Igor Vasiljevic, Vitor Guizilini, Rares Ambrus,
Greg Shakhnarovich, Adrien Gaidon, and Matthew R Wal-
ter. Self-supervised camera self-calibration from video. In
2022 International Conference on Robotics and Automation
(ICRA), pages 8468–8475. IEEE, 2022. 4

[5] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia
Angelova. Depth from videos in the wild: Unsupervised
monocular depth learning from unknown cameras. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8977–8986, 2019. 4

[6] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60:91–110, 2004. 3

[7] Christopher Mei and Patrick Rives. Single view point om-
nidirectional camera calibration from planar grids. In Pro-
ceedings 2007 IEEE International Conference on Robotics
and Automation, pages 3945–3950. IEEE, 2007. 4

[8] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In CVPR, 2019. 3

[9] Tobias Strauss, Julius Ziegler, and Johannes Beck. Cali-
brating multiple cameras with non-overlapping views using
coded checkerboard targets. In 17th international IEEE con-
ference on intelligent transportation systems (ITSC), pages
2623–2628. IEEE, 2014. 3

[10] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea
Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-
ihiko Torii. InLoc: Indoor visual localization with dense
matching and view synthesis. In CVPR, 2018. 3

[11] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam
for monocular, stereo, and rgb-d cameras. Advances in Neu-
ral Information Processing Systems, 34:16558–16569, 2021.
1, 2, 6

[12] Zhengyou Zhang. A flexible new technique for camera cali-
bration. IEEE Transactions on pattern analysis and machine
intelligence, 22(11):1330–1334, 2000. 3

Seq ∆θ = 0.0 ∆θ = 0.25

DroidSLAM DroidCalib DroidSLAM DroidCalib

TartanAir

ME000 0.126 0.408 1.983 0.205
ME001 0.041 0.039 1.667 0.032
ME002 0.467 0.403 11.463 0.230
ME003 0.595 1.428 14.143 0.904
ME004 0.577 1.509 7.296 1.669
ME005 0.189 0.071 3.639 0.094
ME006 1.732 0.902 2.071 1.310
ME007 0.076 0.064 4.618 0.064
MH000 0.040 0.077 33.391 0.136
MH001 0.634 0.033 0.711 0.041
MH002 0.030 0.018 2.284 0.021
MH003 0.019 0.031 0.563 0.014
MH004 3.012 1.601 1.757 2.738
MH005 0.622 0.432 8.779 0.400
MH006 0.392 0.104 2.924 0.215
MH007 0.065 0.154 6.380 0.136

Median 0.291 0.129 3.282 0.170

EuRoC

MH 01 0.011 0.011 0.187 0.011
MH 02 0.018 0.012 0.182 0.012
MH 03 0.022 0.021 1.746 0.021
MH 04 0.043 0.039 0.437 0.039
MH 05 0.040 0.041 0.398 0.040
V1 01 0.036 0.031 0.148 0.031
V1 02 0.012 0.011 0.398 0.011
V1 03 0.024 0.013 0.269 0.015
V2 01 0.016 0.012 1.053 0.013
V2 02 0.009 0.079 0.166 0.041
V2 03 0.013 0.011 0.909 0.011

Median 0.018 0.013 0.398 0.015

TUM

360 0.061 0.079 0.160 0.179
desk 0.018 0.019 0.083 0.019
desk2 0.026 0.069 0.109 0.055
floor 0.022 0.017 0.234 0.017
room 0.043 0.889 0.748 0.548
xyz 0.010 0.011 0.023 0.011
rpy 0.023 0.026 0.044 0.026
plant 0.017 0.018 0.170 0.018
teddy 0.035 0.034 0.137 0.034

Median 0.023 0.026 0.137 0.026

Table S3. Average trajectory error (ATE) in meters of DroidCalib
and DROID-SLAM [11] for different initial errors in the intrin-
sics. Values show medians over three runs per sequence, using
∆θ = 0% and ∆θ = 25%. For DROID-SLAM, we report the re-
produced results rather than the values originally published in [11],
so that differences can be fully attributed to the self-calibrating
bundle adjustment layer. The table is associated with Fig. 6 in the
main paper.

fx fy cx cy ME (pixel)

TartanAir
Ground-truth 320.0 320.0 320.0 240.0

ME000 320.2 320.3 320.0 240.1 0.12
ME001 320.2 320.6 320.2 240.4 0.20
ME002 320.6 320.7 320.5 241.0 0.34
ME003 320.9 321.0 320.4 240.3 0.43
ME004 321.8 321.5 320.7 239.9 0.79
ME005 320.5 320.4 320.3 240.0 0.24
ME006 320.8 320.6 320.5 240.5 0.35
ME007 319.4 319.3 320.2 240.3 0.30
MH000 320.2 320.2 320.3 240.0 0.09
MH001 318.7 318.4 320.4 240.4 0.67
MH002 320.2 320.1 320.2 240.2 0.11
MH003 320.3 320.8 319.8 240.1 0.26
MH004 320.5 320.4 320.2 239.4 0.23
MH005 320.0 320.0 320.4 240.2 0.08
MH006 320.1 320.0 320.4 240.7 0.13
MH007 320.4 320.2 320.2 240.1 0.17

median: 0.23

EuRoC
Ground-truth 458.7 457.3 367.2 248.4

MH 01 457.9 457.9 368.0 249.1 0.28
MH 02 457.9 457.1 367.8 248.5 0.25
MH 03 457.9 458.2 368.0 250.2 0.34
MH 04 457.4 457.2 367.7 249.1 0.38
MH 05 458.3 457.8 367.9 248.6 0.16
V1 01 459.1 459.0 368.2 250.0 0.42
V1 02 459.4 459.4 367.9 249.7 0.49
V1 03 459.6 459.5 368.3 249.4 0.55
V2 01 459.2 459.7 368.2 249.7 0.52
V2 02 459.5 459.8 367.8 249.9 0.58
V2 02 459.5 459.9 367.8 250.0 0.59
V2 03 460.2 460.1 368.2 249.5 0.74

median: 0.42

TUM
Ground-truth 517.3 516.5 318.6 255.3

360 530.2 529.4 320.4 261.1 3.71
desk 531.7 527.5 321.0 248.4 3.70
desk2 525.6 553.6 317.4 284.0 6.93
floor 530.5 518.4 323.0 240.2 3.09
room 523.2 526.1 320.9 261.8 2.22
xyz 523.4 504.0 325.3 281.2 3.03
rpy 531.2 532.7 323.7 276.2 4.66
plant 525.4 527.3 319.5 254.3 2.58
teddy 523.1 519.6 324.1 249.3 1.50

median: 3.09

Table S4. Accuracy of intrinsics estimated using DroidCalib.
Vaules show estimated focal lengths fx, fy and principal point
cx, cy , and the mapping error ME. This table is associated with
Tab. 2 in the main paper and contains all evaluated sequences.

DroidCalib COLMAP+N COLMAP+N SelfSup-Calib
+SP+SG

TartanAir

ME000 0.12 1.46 0.29 7.32
ME001 0.20 1.01 1.34 8.72
ME002 0.34 0.28 0.23 11.03
ME003 0.43 4.19 1.35 14.59
ME004 0.79 1.76 10.77 8.86
ME005 0.24 — 0.36 22.04
ME006 0.35 245.58 0.25 5.00
ME007 0.30 0.11 0.20 48.64
MH000 0.09 0.86 0.59 8.30
MH001 0.67 1349.43 0.60 50.90
MH002 0.11 0.24 0.44 43.41
MH003 0.26 2.42 0.47 60.09
MH004 0.23 2.39 0.51 57.18
MH005 0.08 0.45 0.19 13.32
MH006 0.13 20.56 0.31 50.86
MH007 0.17 0.78 0.64 26.86

EuRoC

MH 01 0.28 0.38 1.15 27.63
MH 02 0.25 2.50 1.27 22.60
MH 03 0.34 0.45 4.11 39.65
MH 04 0.38 8.76 0.71 16.13
MH 05 0.16 21.20 0.55 21.14
V1 01 0.42 1.02 0.71 14.03
V1 02 0.49 1.13 0.48 32.27
V1 03 0.55 2.20 1.25 56.15
V2 01 0.52 1.77 1.19 24.01
V2 02 0.58 9.65 0.70 49.49
V2 03 0.74 1.16 0.42 28.94

TUM

360 3.71 52.14 — 17.58
desk 3.70 6.54 3.97 22.81
desk2 6.93 2.53 5.02 23.04
floor 3.09 10.07 8.09 29.73
room 2.22 4.01 4.10 37.32
xyz 3.03 19.16 — 33.12
rpy 4.66 4.28 5.45 18.99
plant 2.58 8.11 1.66 32.78
teddy 1.50 2.76 2.43 44.53

EuRoC raw

MH 01 0.32 2.92 1.07 6.12
MH 02 0.31 3.08 0.66 1.63
MH 03 0.33 3.60 3.89 14.93
MH 04 0.35 31.10 6.14 9.09
MH 05 0.36 11.17 3.11 7.08
V1 01 0.40 5.10 3.83 47.88
V1 02 0.43 7.58 5.25 29.20
V1 03 0.56 3.73 2.05 5.94
V2 01 0.80 — 4.66 10.96
V2 02 0.69 2.03 3.25 10.78
V2 03 0.73 3.15 3.48 24.58

Table S5. Per-sequence results of the mapping error of self-
calibration baselines. This table is associated with Tab. 1
in the main paper and shows the mapping error (ME) in
units of pixels. Abbreviations are COLMAP+NetVLAD
(COLMAP+N), COLMAP+NetVLAD+Superpoint+Superglue
(COLMAP+N+SP+SG).

