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(Supplementary Material)
A. Additional Details for Method

In this section, we provide further details on the formu-
lations and implementations regarding the method section
(Sec. 3) of our main paper.

A.1. Prompt Generation

We generate 3 to 20 different semantic HOI prompts
via chatGPT [51] using the following query template,
where {m} is replaced with an integer between 3∼20 and
{category} is replaced with one of our input category key-
words:

“Generate at most {m} simple subject-verb-
object prompt where subject’s {category is per-
son/word is “A person”} and object’s category
is {category}. You should use diverse and gen-
eral word but no pronoun for subject. Generated
prompt must align with common sense. Verb must
depict physical interaction between subject and
object. Simple verb preferred.”

The categories considered in this work are listed in Tab. 3. Af-
ter generating HOI prompts, we augment each prompt with
maug = 22 different viewpoint augmentations, including:

(no augmentation) / side view / back view / front
view / top view / bottom view / realistic photo /
seen from side / seen from back / seen from various
views / seen from close view / seen from far away /
scenic view / full body photo / hand photo / face
photo / photo taken close to hand / photo taken
close to face / selfie / close-up photo / hand only /
face only.

A.2. Synthesizing Text-Conditioned Images via Dif-
fusion

We use publicly available Stable-Diffusion [59] model
(version: 1.4) for text-to-image synthesis. We generate 512×
512 images upsampled from the generated 8× downsampled
latents. We sample images with 50 denoising steps using
Pseudo-Numerical-Sampling methods [40] with classifier-
free guidance scale of 7.5.

A.3. Filtering

We apply a cascaded framework to remove unrelated im-
ages. We use PointRend [37] for bounding-box detection
and instance segmentation of COCO [39] categories. For

Table 3. Statistics for generated dataset for all categories.

Category # Prompts # Images # Images after Filtering Rejection-rate (%)

Motorcycle 12 47520 18228 61.64
Bench 12 31680 15193 52.04
Backpack 20 42240 7530 82.17
Handbag 4 23760 1374 94.22
Tie 10 31680 3358 89.40
Frisbee 3 21780 5502 74.74
Skis 12 34848 14547 58.26
Snowboard 4 7920 3251 58.95
Sports ball 8 19008 1611 91.52
Baseball glove 5 11880 260 97.81
Skateboard 16 50688 12069 76.19
Surfboard 16 73920 25352 65.70
Tennis racket 15 47520 19827 58.28
Cell phone 20 84480 2344 97.23
Bicycle 18 42768 11361 73.44
Umbrella 7 16632 2720 83.65
Chair 17 47124 10185 78.39
Bed 5 11880 1856 84.38
Laptop 17 53856 1890 96.49
Hat∗ 10 31680 173 99.45
Sweater∗ 3 5940 689 88.40
Sunglasses∗ 3 5940 78 98.69
Soccer ball∗ 5 15840 1976 87.53
Scarf∗ 5 15840 461 97.09
* denotes LVIS [20] categories

LVIS [20] categories (e.g., hat, sunglasses, sweater), we use
publicly available pretrained Mask-RCNN [24] model from
detectron2 [76] where we set the segmentation threshold as
0.8. We post-process the predicted instances by removing
duplicated bounding boxes on the same target object. Specifi-
cally, we remove the lower-confidence instance if two bound-
ing boxes of the same category overlap with the intersection
over smaller bounding box value bigger than 0.8, with ex-
ceptions of bounding boxes with confidence over 0.98. We
also filter the images with multiple or none human/object
(target category) instances. We then reject images when the
intersection over object bounding box value between the
human box and object box is smaller than 0.1, assuming
there is no interaction between them. For keypoint-filtering,
we represent the keypoints in COCO [39] format. We use a
top-down approach using publicly available pretrained HR-
Net [70]+Darkpose [82] (provided by MMPose [13]) with
a confidence threshold of 0.7 for keypoint prediction. We
exclude the image if no shoulder joints (i.e., left-shoulder,
right-shoulder) or no hip joints (i.e., left-hip, right-hip) ex-
ist. Finally, we reject the images with a very small human
bounding box that returns no prediction from 3D human
pose estimator [60].

A.4. Viewpoint Estimation via 3D Human Pose Es-
timation

While the weak perspective is sufficient for projection,
we employ a perspective camera to consider the distance



Figure 13. Visualization of LBS weights.

between the camera and the human subject. To convert the
weak perspective camera model π and camera-centric ori-
entation ϕ (refer to Eq. 3) into a perspective camera model
Π in the person-centric coordinate system (i.e., the origin is
defined at the pelvis), we apply optimization to compute Π
by aligning 3D joint projections and j:

Π∗ = argmin
Π

∑
i

||Π(J0
i )− ji||2, (8)

where i is the joint index and J0 are the 3D joints of the
SMPL model in person-centric coordinate, which is sim-
ply obtained by putting zero orientation for ϕ while keeping
other parameters θ and β. We include the joints ji outside the
image range for optimization described in Eq. 8. We optimize
the joint-reprojection loss using Adam [36] with a learning
rate of 0.01 for 2400 iterations. We early-terminate if the
joint-reprojection loss is below 0.7 in pixel scale. We ini-
tialize camera intrinsic parameters with field-of-view 46.4◦

and camera extrinsic parameters with the rotation matrix
achieved by Rodrigues formula using ϕ and the translation
vector by [tx, ty, 2f/s] where tx, ty, s are each x,y-direction
translations, and scale from weak-perspective camera π.

A.5. 3D Occupancy Estimation via Human Pose
Canonicalization

We define LBS weights for arbitrary point xc in canonical
space following Eq. 4 with k = 30. We encourage “zero
motions” by mixing computed LBS weights with standard
basis vector for 1st dimension e1 ∈ R24:

ωdeweight(x
c) = (1− α)e1 + αω(xc) (9)

α = |max(
τ − dmin

τ + dmin
, 0)|s (10)

where τ and s are each bandwidth and smoothing hyper-
parameters we choose as τ = 0.8, s = 0.25, and dmin is
the distance between xc and nearest SMPL mesh vertex.
Note that the 1st element of LBS weight is related to the
pelvis joint, which is fixed to the origin and aligned in a

Table 4. Definition of Body Parts. Each body part is defined by
merging multiple SMPL body segmentation maps from Meshca-
pade [45].

Body Part SMPL Body Segmentation Labels

rightHand rightHand, rightHandIndex1
leftHand leftHand, leftHandIndex1
rightArm rightArm, rightForeArm
leftArm leftArm, leftForeArm
rightLowerLeg rightLeg
leftLowerLeg leftLeg
rightUpperLeg rightUpLeg
leftUpperLeg leftUpLeg
rightFoot rightFoot, rightToeBase
leftFoot leftFoot, leftToeBase
torso spine, spine1, spine2, leftShoulder, rightShoulder
face head, neck

person-centric coordinate system as we set ϕ = 0; hence,
the transformation matrix is identity in SE(3). Finally, we
apply Laplace smoothing over the entire grid 30 times to
smooth LBS weights, similar to SelfRecon [30]. See Fig. 13
for visualization of extended LBS weights.

A.6. Uniform View Sampling

Before performing aggregation, we first check the camera
distribution and assign the accumulation score rk for each
image. Specifically, we divide the azimuth region [0, 2π) into
12 equispaced bins (each π

6 long) and count the number of
cameras in each bin. If the camera associated with the image
falls into a specific bin, rk is set as the inverse of the camera
numbers in that bin. After assigning rk for all images, we
then perform the aggregation following Eq. 6 or Eq. 13.

A.7. Inference for Posed Space

At inference, we first calculate LBS weights that trans-
form the voxels from pose-deformed space to canonical
space in the same way of Eq. 4 and Eq. 9, where in this
case xc is replaced with x and vi corresponds to location of
i-th vertex in SMPL in pose-deformed space. Denoting the
j-th LBS weights in pose-deformed space as ωinv

j (x; θ), we
inversely deform the voxels in pose-deformed space as:

xc = W−1(x) =

nb∑
j=1

ωinv
j (x; θ) ·Bj(θj)

−1 · x (11)

We set Φo(x|θ) as the learned occupancy Φc
o(x

c) in canoni-
cal distribution to infer pose-deformed distribution.

A.8. Selective Aggregation via Semantic Clustering

We note that body part a ∈ A is a hyperparameter that
can be easily given by annotating a set of SMPL mesh ver-
tices with a body part label. In practice, we define A as 12
body parts obtained by merging publicly available SMPL
segmentation maps from Meshcapade [45]. Correspondence
between defined body parts and SMPL segmentation labels
is provided in Tab. 4. Representing each body part a ∈ A as



a binary operator that outputs 1 if the corresponding SMPL
mesh vertex is part of the body part a else 0, we can define
the interaction region for a in the canonical space as below:

Ia =
⋃

i; a(vi)=1

{xc| ||xc − vi|| ≤ ϵ} (12)

where ϵ is the interaction threshold, where we set as ϵ = 0.13.
The interaction region Ia plays a role of determining whether
the provided image contains the HOI involving contact with
body part a. Specifically, we ignore the image if none of the
3D canonical points within Ia are warped and projected into
the object mask. Putting it all together, selective aggregation
for 3D occupancy can be described as:

Φc
o(x

c|s) =

|G(p)|∑
k=1

rkMk(Πk(W(xc)))·1(1∈Mk(Πk(W(Ia))))

|G(p)|∑
k=1

rkIk(Πk(W(xc)))·1(1∈Mk(Πk(W(Ia))))

(13)
where G(p) denotes the set of generated images from single
HOI prompt p ∈ P and 1(·) is a binary operator that returns
1 if the provided input is true else 0. At inference, learned
occupancy probabilities are used to compute Φo(x|θ, s) from
Eq. 1 as described in Supp. Mat. A.7.

B. Additional Details for Experiments
B.1. Dataset

Generated Dataset. We refer readers to Tab. 3 for full per-
category statistics for the generated dataset.
Image Search Dataset. We use m = 12 prompts (same as
the prompts used for generating dataset) for category motor-
cycle and maug = 22 viewpoint augmentations (same as in
Supp. Mat. A.1) for image search, and we set the desired
number of retrieved images as N = 1000 or N = 10000. We
crawl up to ⌊τmult × N

m×maug
⌋+ τadd image links, where τmult

and τadd are introduced to tolerate the number of undown-
loadable/unreadable files. Specifically, we set τmult = 1.1
and τadd = 1. Subsequently, collected images are resized to
a shorter side length of 512 and center-cropped, resulting in
512× 512 images.
Extended COCO-EFT Dataset for Testing. We provide
detailed dataset preparation procedures for the COCO-EFT
dataset. Similar to filtering (Sec. 3.2), we only retain samples
with a single human, single object (of target category), and
filter the images based on intersection over smaller bounding
box value between the human and the object. We assume
no human-object interaction if this value is below 0.5. It is
important to note that we do not apply any manual filtering to
ensure fairness in our evaluation. After filtering, we compute
the perspective camera parameters following Supp. Mat. A.4,
except we optimize for 3000 iterations and early-terminate
if the joint-reprojection loss is below 0.5 in pixel scale. We

Table 5. Statistics for Extended COCO-EFT dataset.

Category Number of Images in Dataset

Motorcycle 36
Bench 37
Backpack 83
Handbag 47
Tie 37
Frisbee 36
Skis 86
Snowboard 67
Sports ball 67
Baseball glove 49
Skateboard 176
Surfboard 110
Tennis racket 117
Cell phone 60

reject the image if the joint-reprojection loss is over 1.0 in
pixel scale. To ensure multi-viewpoint evaluation, we only
use categories with more than 30 images in the extended
COCO-EFT dataset. Refer to Tab. 5 for statistics.

B.2. Projective Average Precision

We provide detailed protocols for PAP evaluation and in-
tuition behind each step in this section. Briefly speaking, the
PAP metric quantifies the validity of object occupancy distri-
bution in pose-deformed 3D space (current space) without
3D annotations by comparing the projection of distribution
with 2D annotation from multiple viewpoints. Given the cat-
egory keyword to evaluate, we first start by deforming the
distribution from canonical space to pose-deformed space
using annotated SMPL pose from the test dataset follow-
ing the inference method described in Sec. 3.3. Note that
we can get probability occupancy values for equispaced
gridpoints in pose-deformed space. We discretize the distri-
bution in pose-deformed space for various threshold values
and project binary occupancy using an annotated perspective
camera. Discretization is applied to bypass the ambiguity
of mixing probabilities when more than one 3D probability
value falls into the same pixel in 2D. We use all thresholds
from 0.01 ∼ 1 equispaced with interval 0.01. Using multiple
thresholds enables us to evaluate the distribution regarding
the intra-class variation of object geometry. Next, we com-
pute pixel-wise precision and recall between rendered mask
and annotated object segmentation mask for all thresholds.
Specifically, we downsample rendered mask and object seg-
mentation mask preserving aspect ratio with a shorter length
being 32 before we compute precision and recall. We down-
sample for two reasons: (1) to allow other 3D representations
that require high-compute in the PAP evaluation pipeline,
and (2) to tolerate the variance in object size and geometry.
Note that the goal of the PAP metric is to evaluate validity of
the distribution, not the accuracy or quality of the reconstruc-



tion. Finally, we compute interpolated AP similar to Pascal
VOC 2008 [17] using precision-recall values, which are sub-
sequently averaged across all test images within the given
category to yield the PAP value. We report two different PAP
metrics in terms of interpolation methods when predicted
occupancy is entirely 0 after discretization:

• Vanilla: Uses the highest precision value from lower
thresholds when discretized distribution is entirely 0

• Strict: Sets precision value as 0 when discretized distri-
bution is entirely 0

Note that Human-Occlusion-Aware PAP metrics follow the
same protocols, except we exclude the human-occluded re-
gion when computing precision and recall. We do not apply
semantic clustering during quantitative evaluation, i.e., we
evaluate marginalized distribution aggregated with all im-
ages generated from all prompts per category.

C. Additional Qualitative Results
We report additional qualitative results for various cate-

gories in this section. Same as in Sec. 4.4, we use SMPL pose
sampled from the extended COCO-EFT dataset for COCO
categories or generated dataset for LVIS categories to deform
the distribution in canonical space to pose-deformed space.
See Fig. 14 ∼ 36 for results.

D. Limitations & Future Works
Granularity. Our method returns a plausible set of object
distributions; however, we represent them as a low-resolution
voxel field (resolution 483), which limits the representability
and granularity of the results. Future research can explore
alternative 3D representations (e.g., volume rendering-based
methods similar to NeRF [46]) to improve computation effi-
ciency and achieve higher quality.
Problems with Small Objects. Our method particularly
shows weakness in small objects, especially those interact-
ing with hands, primarily due to heavy occlusion and expres-
sivity constraints in the SMPL model. For future research,
employing the SMPL-X [53] representation to learn distri-
butions for small objects interacting with hands, or using
close-view cameras from various angles to reduce occlusion,
could be beneficial.
Bias and Artifacts in Synthesized Images. We use view-
point augmentation to control the camera distribution during
image synthesis; however, this method lacks full controlla-
bility and requires improvement. Although we minimize this
effect by assigning camera distribution-aware accumulation
scores, there is still a possibility of bias. One potential ap-
proach to address this challenge is by employing the PerpNeg
algorithm [1] to enhance viewpoint control during genera-
tion. Additionally, synthesized images are likely to contain

artifacts, which could propagate errors in later steps (e.g.,
human prediction) and lead to incorrect modeling of the oc-
cupancy probability distribution. Improving image synthesis
methods will help mitigate such challenges.
Bias due to Heavy Filtering. As our filtering strategy in-
volves various off-the-shelf methods, employing heavy fil-
tering may introduce bias. For example, the object detection
method we use may be imperfect and could filter out images
even if an object is present, leading to bias in the gener-
ated dataset after filtering. Consequently, this may result in
bias in the occupancy probability distribution. Soft filtering
methods (i.e., applying confidence weights to each image
instead of removing images with hard thresholds) may be an
alternative, which we leave for future work.
Modelling Multimodal Scenarios. The semantic clustering
step in our method provides a means to understand objects
that humans can interact with in various ways. While our
method effectively models plausible HOI exhibiting specific
interaction types, it requires manual definition of body parts
and specification of HOI prompts to represent the semantics.
Additionally, relying on user evaluation for identifying plau-
sible semantic clusters hinders the efficient and automatic
expansion of the corpus, as this process becomes manual.
We acknowledge the need for further research to enhance
the automatic generation of 3D HOI spatial relations without
this manual constraint.
Category Limits. Currently, our method mainly consid-
ers categories from COCO [39] and a few categories from
LVIS [20] due to the availability of the object detection
and segmentation method. A promising future direction is
to replace this current object detector with open-vocabulary
models like ODISE [78] to incorporate additional categories.
Evaluation Metrics. Our evaluation metric (PAP) has room
for improvement. For example, our current method utilizes
a simple downsampling strategy to smooth the distribution
during the protocol, which could be enhanced with other
strategies (e.g., kernel-smoothing methods). Additionally,
it is worth exploring enhancements to the metric that can
effectively quantify the validity of multimodal distributions.
Potential Downstream Applications. Our method exhibits
myriads of potential downstream applications, such as; (1)
using our extracted knowledge as prior for HOI modeling
(e.g., replacing interaction labels in PHOSA [83]); (2) im-
proving action recognition methods based on the current
pose of the human and object; (3) scene generation and ob-
ject localization from human postures; or (4) applications
for robotics.
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Figure 14. Qualitative results for category backpack.
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Figure 15. Qualitative results for category bicycle.
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Figure 16. Qualitative results for category motorcycle.
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Figure 17. Qualitative results for category umbrella.
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Figure 18. Qualitative results for category skis.
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Figure 19. Qualitative results for category bed.
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Figure 20. Qualitative results for category skateboard.

Reference 

Image
Overlay Image View Top View

Canonical

Side View

Canonical

Front View

frisbee

Figure 21. Qualitative results for category frisbee.
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Figure 22. Qualitative results for category bench.
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Figure 23. Qualitative results for category surfboard.
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Figure 24. Qualitative results for category chair.
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Figure 25. Qualitative results for category laptop.
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Figure 26. Qualitative results for category tie.
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Figure 27. Qualitative results for category sports ball.
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Figure 28. Qualitative results for category cell phone.
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Figure 29. Qualitative results for category baseball glove.
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Figure 30. Qualitative results for category hat.



Reference 

Image
Overlay Image View Top View

Canonical

Side View

Canonical

Front View

Sunglasses

Figure 31. Qualitative results for category sunglasses.
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Figure 32. Qualitative results for category sweater.
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Figure 33. Qualitative results for category snowboard.
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Figure 34. Qualitative results for category handbag.
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Figure 35. Qualitative results for category soccer ball.
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Figure 36. Qualitative results for category scarf.


