
Auto-encoder

Pre-trained sd-vae-ft-mse
In channels 3
Latent channels 4
Block channels [128, 256, 512, 512]
Down-sample ratio 8
Layers per block 2
Norm groups 32

U-Net

Pre-trained ✗
In channels 8
Out channels 4
Block channels [128, 256, 512, 512]
Attention channels [128, 256, 512, 512]
Layers per block 2
Head nums 8
Filter nums 64
Norm groups 32

Source image encoder

Pre-trained ✗
In channels 4
Block channels [128, 256, 512, 512]
Layers per block 1
Norm groups 32
Time embedding ✗

Noise scheduler
β schedule Scaled linear
β start 0.00085
β end 0.012

Data augmentation RandomCrop ✗
RandomFlip ✓

Training setting

Iterations 600k
Batch size 32
Initial LR 5e-5
Warm-up scheme Linear
Warm-up iterations 1k
Warm-up starting 0
Optimizer Adam (0.9, 0.999)
Weight decay 0.01
Gradient clip 0.1
Precision fp16
CFG probability 10%

Sampling setting
Scheduler PNDM [3]
CFG scale 5
Steps 50

Hardware GPU 2 × V100 (32 GB)
Training duration 7 days

Table 1. Details for training and sampling PoCoLD.

A. Implementation details

We list all hyper-parameters used for training and sam-
pling our PoCoLD in Tab. 1, including model architecture
details, training recipe, and sampling setting.

B. Additional experiment results

Impact of CFG values. While tuning CFG is indeed use-
ful, it alone is insufficient to achieve SOTA performance
along with vanilla cross attention, as reflected in Tab. 2. We
empirically found that PIDM’s CFG strategy is not suited
for our case and exploited our well-tuned CFG strategy

Attention CFG Type CFG Values FID ↓ SSIM ↑ LPIPS ↓
Vanilla Disentangled ωp, ωs = 2 19.0473 0.5327 0.3620
Vanilla Dual CFG [1] ωp, ωs = 2 11.9200 0.6601 0.2440
Vanilla Dual CFG [1] ωp, ωs = 5 8.2903 0.7095 0.1783
Ours Dual CFG [1] ωp, ωs = 5 8.0667 0.7310 0.1642

Table 2. Quantitative results of tuning different CFG values.

Figure 1. Qualitative comparison between our PoCoLD and the
variant which replaces DensePose with pose skeleton.

(Dual CFG [2] with ωp, ωs = 5) as the default setting for
all experiments. The proposed attention is designed for ef-
ficiently leveraging DensePose, resulting in further perfor-
mance improvements on the basis of already using the best
CFG, and achieving SOTA results.

Impact of DensePose. We try to replace DensePose
by using the body skeleton in the latent space (channel-
wise) while keeping all training recipes intact. This vari-
ant gives 14.7362/0.6315/0.2550 in FID/SSIM/LPIPS, vs.
8.0667/0.7310/0.1642 by the original variant. Along with
the qualitative results shown in Fig. 1, this verifies again
that: (1) DensePose offers more comprehensive structural
information, which is helpful to mitigate ambiguity; and
(2) DensePose facilitates spatial alignment with the target
image under proper regularization (e.g., the proposed pose
constraints).
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High-resolution visualization results. We provide some
high-resolution visualization results in Fig. 2 to better un-
derstand the performance of our PoCoLD in a qualitative
way. We mainly compare our PoCoLD with prior diffusion-
based art, i.e., PIDM [1]. In each row, the sequence of im-
ages is as follows, from left to right: source image, target
pose, ground truth, generation by PIDM, and our result. Our
PoCoLD exhibits enhanced preservation of both texture and
shape. Moreover, it demonstrates greater stability in gener-
ating results in certain infrequent scenarios, e.g., enlarged
person/garment in the source image.

Figure 2. High-resolution qualitative result (from left to right:
source image, target pose, ground truth, PIDM, and our PoCoLD).
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