FLatten Transformer: Vision Transformer with Focused Linear Attention **Supplementary Material**

A. Proof of Proposition 1

As mentioned in the main paper, with the aim to restore the sharp distribution in linear attention, we present our Focused Function f_p :

$$\operatorname{Sim}\left(Q_{i}, K_{j}\right) = \phi_{p}\left(Q_{i}\right)\phi_{p}\left(K_{j}\right)^{T}, \qquad (1)$$

where
$$\phi_p(x) = f_p (\text{ReLU}(x)), \ f_p(x) = \frac{\|x\|}{\|x^{**p}\|} x^{**p},$$
 (2)

and x^{**p} represents the power p of x bit by bit. We follow previous linear attention modules to use the ReLU function first to ensure the non-negativity of input. Therefore, when proving the effects of f_p , we only consider $x, y \ge 0$.

Proposition 1 (Feature direction adjustment with f_p) Let $x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_n) \in \mathbb{R}^n, x_i, y_j \ge 0.$ Assume $0 < \langle x, y \rangle < ||x|| ||y||$ and x, y have the single largest value x_m , y_n respectively.

For a pair of feature $\{x, y\}$ with m = n:

$$\exists p > 1, s.t. \langle \phi_p(x), \phi_p(y) \rangle > \langle x, y \rangle.$$
(3)

For a pair of feature $\{x, y\}$ *with* $m \neq n$ *:*

$$\exists p > 1, \ s.t. \ \langle \phi_p(x), \phi_p(y) \rangle < \langle x, y \rangle.$$
(4)

Proof.

$$\phi_p(x) = f_p (\operatorname{ReLU}(x)) = f_p(x),$$

$$\phi_p(y) = f_p (\operatorname{ReLU}(y)) = f_p(y).$$
(5)

$$|f_p(x)| = \frac{\|x\|}{\|x^{**p}\|} \|x^{**p}\| = \|x\|, \|f_p(y)\| = \|y\|.$$
(6)

Therefore, we have:

$$\langle \phi_p(x), \phi_p(y) \rangle = \langle f_p(x), f_p(y) \rangle$$

= $||f_p(x)|| ||f_p(y)|| \langle u, v \rangle$ (7)
= $||x|| ||y|| \langle u, v \rangle ,$

where

$$\langle u, v \rangle = \left\langle \frac{f_p(x)}{\|f_p(x)\|}, \frac{f_p(y)}{\|f_p(y)\|} \right\rangle$$

$$= \frac{\sum_{i=1}^n x_i^p y_i^p}{\sqrt{\left(\sum_{i=1}^n x_i^{2p}\right) \left(\sum_{i=1}^n y_i^{2p}\right)}}$$

$$= \frac{\sum_{i=1}^n a_i^p b_i^p}{\sqrt{\left(\sum_{i=1}^n a_i^{2p}\right) \left(\sum_{i=1}^n b_i^{2p}\right)}},$$

$$(8)$$

and

$$a_{i} = x_{i} / \max_{1 \le i \le n} (x_{i}), b_{i} = y_{i} / \max_{1 \le i \le n} (y_{i}), a_{i}, b_{i} \in [0, 1].$$
(9)

Based on our assumption, we have:

$$\exists !m, \ s.t. \ a_m = 1, \ \exists !n, \ s.t. \ b_n = 1.$$
 (10)

Therefore.

$$\lim_{p \to \infty} a_i^p = \begin{cases} 1, \ i = m \\ 0, \ i \neq m \end{cases}, \quad \lim_{p \to \infty} b_j^p = \begin{cases} 1, \ j = n \\ 0, \ j \neq n \end{cases}.$$
(11)

Then we consider the following two cases: (1) m = n:

$$\lim_{p \to \infty} \langle u, v \rangle = \lim_{p \to \infty} \frac{\sum_{i=1}^{n} a_i^p b_i^p}{\sqrt{\left(\sum_{i=1}^{n} a_i^{2p}\right) \left(\sum_{i=1}^{n} b_i^{2p}\right)}} = \frac{1 \times 1}{\sqrt{1 \times 1}} = 1.$$
(12)

_____ m

Eq. (7), Eq. (12) \Rightarrow

$$\lim_{p \to \infty} \langle \phi_p(x), \phi_p(y) \rangle = \lim_{p \to \infty} \|x\| \|y\| \langle u, v \rangle$$

= $\|x\| \|y\| > \langle x, y \rangle$. (13)

Thus we have,

$$\exists p > 1, \ s.t. \ \langle \phi_p(x), \phi_p(y) \rangle > \langle x, y \rangle.$$
 (14)

Figure 1. The distribution of attention weights from DeiT-tiny. Feature corresponding to the red block is used as query.

(2) $m \neq n$:

$$\lim_{p \to \infty} \langle u, v \rangle = \lim_{p \to \infty} \frac{\sum_{i=1}^{n} a_i^p b_i^p}{\sqrt{\left(\sum_{i=1}^{n} a_i^{2p}\right) \left(\sum_{i=1}^{n} b_i^{2p}\right)}} = \frac{1 \times 0 + 0 \times 1}{\sqrt{1 \times 1}} = 0.$$
(15)

Eq. (7), Eq. (15) \Rightarrow

$$\lim_{p \to \infty} \langle \phi_p(x), \phi_p(y) \rangle = \lim_{p \to \infty} \|x\| \|y\| \langle u, v \rangle$$

= 0 < \langle x, y \langle. (16)

Thus we have,

$$\exists p > 1, \ s.t. \ \langle \phi_p(x), \phi_p(y) \rangle < \langle x, y \rangle. \tag{17}$$

Therefore, with a proper p, our focused function $f_p(\cdot)$ practically achieves a more distinguished difference between similar query-key pairs (Eq. (3)) and dissimilar query-key pairs (Eq. (4)). Actually, f_p divides the features into several groups according to their nearest axes, improving the similarity within each group while reducing the similarity between the groups, thus restoring the sharp attention distribution as the original Softmax function.

Method	Reso	#Params	Flops	Top-1
DeiT-T [3]	224^{2}	5.7M	1.2G	72.2
FLatten-DeiT-T	224^{2}	6.1M	1.1G	74.1 (+1.9)
PVT-T [4]	224^{2}	13.2M	1.9G	75.1
FLatten-PVT-T	224^{2}	12.2M	2.0G	77.8 (+2.7)
PVT-S	224^{2}	24.5M	3.8G	79.8
FLatten-PVT-S	224^{2}	21.7M	4.0G	81.7 (+1.9)
PVT-M	224^{2}	44.2M	6.7G	81.2
FLatten-PVT-M	224^{2}	37.2M	7.0G	83.0 (+1.8)
PVT-L	224^{2}	61.4M	9.8G	81.7
FLatten-PVT-L	224^{2}	50.6M	10.4G	83.4 (+1.7)
PVTv2-B0 [5]	224^{2}	3.4M	0.6G	70.5
FLatten-PVTv2-B0	224^{2}	3.6M	0.6G	71.1 (+0.6)
PVTv2-B1	224^{2}	13.1M	2.1G	78.7
FLatten-PVTv2-B1	224^{2}	12.9M	2.2G	79.5 (+0.7)
PVTv2-B2	224^{2}	25.4M	4.0G	82.0
FLatten-PVTv2-B2	224^{2}	22.6M	4.3G	82.5 (+0.5)
PVTv2-B3	224^{2}	45.2M	6.9G	83.2
FLatten-PVTv2-B3	224^{2}	38.3M	7.3G	83.7 (+0.5)
PVTv2-B4	224^{2}	62.6M	10.1G	83.6
FLatten-PVTv2-B4	224^{2}	51.8M	10.7G	84.0 (+0.4)
Swin-T [2]	224^{2}	29M	4.5G	81.3
FLatten-Swin-T	224^{2}	29M	4.5G	82.1 (+0.8)
Swin-S	224^{2}	50M	8.7G	83.0
FLatten-Swin-S	224^{2}	51M	8.7G	83.5 (+0.5)
Swin-B	224^{2}	88M	15.4G	83.5
FLatten-Swin-B	224^{2}	89M	15.4G	83.8 (+0.3)
Swin-B	384^{2}	88M	47.0G	84.5
FLatten-Swin-B	384^{2}	91M	46.5G	85.0 (+0.5)
CSwin-T [1]	224^{2}	23M	4.3G	82.7
FLatten-CSwin-T	224^{2}	21M	4.3G	83.1 (+0.4)
CSwin-S	224^{2}	35M	6.9G	83.6
FLatten-CSwin-S	224^{2}	35M	6.9G	83.8 (+0.2)
CSwin-B	224^{2}	78M	15.0G	84.2
FLatten-CSwin-B	224^{2}	75M	15.0G	84.5 (+0.3)
CSwin-B	384^{2}	78M	47.0G	85.4
FLatten-CSwin-B	384^{2}	78M	46.4G	85.5 (+0.1)

Table 1. Comparisons of focused linear attention with other vision transformer backbones on the ImageNet-1K classification task.

B. More Visualizations

We visualize more examples of attention weights in Fig. 1. To better show the contribution of our focused function and DWC, we start from the vanilla linear attention and introduce f_p and DWC separately. As demonstrated in the last three rows, DWC improves local focus ability but cannot focus on any position, while f_p practically enhances model's focus ability, helping model focus on more informative regions. Combining f_p and DWC, our focused linear attention module restores the sharp distribution as the original Softmax attention.

C. Full Classification Results

Due to the page limit, we only present representative ImageNet classification results in Figure 6 of main paper. Here, we give all the classification results when applying our focused linear attention module on various sizes of the five baseline models in Tab.1.

D. Model Architectures

We summarize the architectures of five Transformer models adopted in the main paper, including DeiT [3], PVT [4], PVTv2 [5], Swin Transformer [2], CSwin Transformer [1] in Tab.2-8. In practice, we substitute the original self-attention blocks at all stages of the DeiT, PVT and PVTv2 with the focused linear attention block, but only adopt our module at early stages of Swin and CSwin. The model structure (width and depth) are kept unchanged, except for CSwin-T and CSwin-B, where we increase the depth of the first and second stages and correspondingly reduce the depth of the third stage to better reflect our module's advantage of enlarged receptive field.

References

- [1] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped windows. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12124–12134, 2022. 2, 3
- [2] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 10012–10022, 2021. 2, 3
- [3] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In *International Conference on Machine Learning*, pages 10347–10357. PMLR, 2021. 2, 3
- [4] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.

Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 568–578, 2021. 2, 3

[5] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. *Computational Visual Media*, 8(3):415–424, 2022. 2, 3

stage output -		FLatten-DeiT-T						
		FLatten	DeiT Block					
res1	14×14	$\begin{bmatrix} \min 14 \times 14 \\ \dim 192 \\ head 3 \end{bmatrix} \times 12$	None					

Table 2. Architectures of FLatten-DeiT models.

stage	output	FLatten-PV	Г-М	FLatten-PVT-L						
stage	output	FLatten PVT Block FLatten								
			Conv1×1, stri	ide=4, 64, LN						
roc 1	56×56	win 56×56		$\begin{bmatrix} \sin 56 \times 56 \end{bmatrix}$						
1051	30×30	dim 64 $\times 2$	None	dim 64 $\times 3$	None					
		head 1		head 1						
			Conv1×1, stride=2, 128, LN							
res2	28×28	$\begin{bmatrix} \sin 28 \times 28 \end{bmatrix}$		$\begin{bmatrix} \sin 28 \times 28 \end{bmatrix}$						
		dim 128 $\times 2$	None	dim 128 $\times 3$	None					
		head 2		head 2						
			Conv1×1, strie	de=2, 320, LN						
res3	14×14	win 14×14		$\begin{bmatrix} \sin 14 \times 14 \end{bmatrix}$						
1055		dim 320 $\times 2$	None	dim 320 $\times 6$	None					
		head 5		head 5						
			Conv1×1, strie	de=2, 512, LN						
r 224	7×7	$\begin{bmatrix} \sin 7 \times 7 \end{bmatrix}$		$\begin{bmatrix} \sin 7 \times 7 \end{bmatrix}$						
1034	1 ~ 1	dim 512 $\times 2$	None	dim 512 $\times 3$	None					
		head 8		head 8						

Table 3. Architectures of FLatten-PVT models (Part1).

stage	output	FLatten-PV7	Г-М	FLatten-PV7	Latten-PVT-L			
stage	output	FLatten	PVT Block	FLatten	PVT Block			
			Conv1×1, stri	de=4, 64, LN				
res 1	56×56	$\begin{bmatrix} \sin 56 \times 56 \end{bmatrix}$		win 56×56				
1031	00 × 00	dim 64 $\times 3$	None	dim 64 $\times 3$	None			
		head 1		head 1				
			Conv1×1, strie	de=2, 128, LN				
raci	28×28	$\begin{bmatrix} \sin 28 \times 28 \end{bmatrix}$		$\begin{bmatrix} \sin 28 \times 28 \end{bmatrix}$				
resz		dim 128 $\times 3$	None	dim 128 $\times 8$	None			
		head 2		head 2				
			Conv1×1, strie	de=2, 320, LN				
res3	14×14	$\begin{bmatrix} \min 14 \times 14 \end{bmatrix}$		$\begin{bmatrix} \sin 14 \times 14 \end{bmatrix}$				
1035		dim 320 $\times 18$	None	dim 320 $\times 27$	None			
		head 5		head 5				
			Conv1×1, strie	de=2, 512, LN				
res	7×7	$\begin{bmatrix} \sin 7 \times 7 \end{bmatrix}$		$\begin{bmatrix} \sin 7 \times 7 \end{bmatrix}$				
1034		dim 512 $\times 3$	None	dim 512 $\times 3$	None			
		head 8		head 8				

Table 4. Architectures of FLatten-PVT models (Part2).

stage	output	FLatten-PVTv2-B0			FLatten-PVTv2-B1				FLatten-PVTv2-B2				
stage	output	FLatten PVTv2 Block		PVTv2 Block		FLatten		PVTv2 Block	FLatten			PVTv2 Block	
		Conv4×4,	stride	=4, 32, LN		Conv4×4, stride=4, 64, LN							
ros 1	56×56	win 56×56				win 56×56				win 56×56			
1681	30×30	dim 32	$\times 2$	None		$\dim 64$	$\times 2$	None		$\dim 64$	$\times 3$	None	
		head 1				head 1				head 1			
		Conv1×1, stride=2, 64, LN				Conv1×1, stride=2, 128, LN							
res2	28×28	win 28×28			Т	win 28×28			Т	win 28×28			
		dim 64	$\times 2$	None		$\dim 128$	$\times 2$	None		$\dim 128$	$\times 3$	None	
		head 2				head 2				head 2			
		Conv2×2, s	tride=	=2, 160, LN	Conv2×2, stride=2, 320, LN								
ras3	14 > 14	win 14×14			Γ	win 14×14				win 14×14			
1685	14 ^ 14	dim 160	$\times 2$	None		$\dim 320$	$\times 2$	None		$\dim 320$	$\times 6$	None	
		head 5				head 5				head 5			
		Conv2×2, s	tride=	=2, 256, LN	Conv2×2, stride=2, 512, LN								
rasl		$\begin{bmatrix} \sin 7 \times 7 \end{bmatrix}$				win 7×7				win 7×7			
1054		dim 512	$\times 2$	None		dim 512	$\times 2$	None		dim 512	$\times 3$	None	
		head 8				head 8				head 8			

Table 5. Architectures of FLatten-PVTv2 models (Part1).

stage	output	FLatten-F	FLatte	en-PVTv2-B4	
stage	output	FLatten	PVTv2 Block	FLatten	PVTv2 Block
			Conv4×4, stri	de=4, 64, LN	· · · · ·
res 1	56×56	win 56×56		win 56×56	
1051	00×00	dim 64 $\times 3$	3 None	dim 64	×3 None
		head 1		head 1	
			Conv2×2, stric	le=2, 128, LN	
res?	28×28	win 28×28		win 28×28	
1052		dim 128 $\times 3$	3 None	$\dim 128$	×8 None
		head 2		head 2	
			Conv2×2, stric	le=2, 320, LN	
res3	14×14	win 14×14		win 14×14	
1035		dim 320 $\times 12$	8 None	dim 320	×27 None
		head 5		head 5	
			Conv1×1, stric	le=2, 512, LN	
r 264	7×7	win 7×7		win 7×7	
1034	1 × 1	dim 512 $\times 3$	None	dim 512	×3 None
		head 8		head 8	

Table 6. Architectures of FLatten-PVTv2 models (Part2).

stage	output	FLatten-Swin-T			FLa	Swin-S	FLatten-Swin-B								
stage	output	FLatten		Swin Bloc	k	FLatten	FLatten		Swin Block			Swin Block			
		concat	4×4	4, 96, LN		concat	$4 \times$	4, 96, LN		concat	4×4	4, 128, LN			
res1 56	56×56	win 56×56				win 56×56				win 56×56					
	30×30	$\dim 96$	$\times 2$	None		dim 96	$\times 2$	None		dim 128	$\times 2$	None			
		head 3				head 3				head 3					
		concat 4×4 , 192, LN			concat	concat 4×4 , 192, LN				concat 4×4 , 256, LN					
res2 28	28×28	win 28×28				win 28×28				win 28×28					
	20 × 20	dim 192	$\times 2$	None		dim 192	$\times 2$	None		dim 256	$\times 2$	None			
		head 6				head 6				head 6					
		concat 4	1×4	, 384, LN		concat	4, 384, LN	concat 4×4 , 512, LN							
res3	14×14			$\begin{bmatrix} \sin 7 \times 7 \end{bmatrix}$				$\int \sin 7 \times 7$				win 7×7			
1035	11 / 11	None		dim 384	$\times 6$	None		dim 384	$\times 18$	None		$\dim 512$	$\times 18$		
				head 12				head 12				head 12			
		concat 4	1×4	, 768, LN		concat	concat 4×4 , 768, LN			concat 4×4 , 1024, LN					
res	7×7			win 7×7				win 7×7	1			$\int \sin 7 \times 7$]		
1034	1	None		dim 768	$\times 2$	None		dim 768	$\times 2$	None		dim 1024	$\times 2$		
						head 24				head 24				head 24]

Table 7. Architectures of FLatten-Swin models.

		FLatten-CSwin-T				FLatten-CSwin-S				FLatten-CSwin-B			
stage	output	FLatten CSwin Block F		FLatten		CSwin Block		FLatten		CSwin Block			
				Conv7×	<7, stri	de=4, 64, LN				Conv7×7, stride=4, 96, LN			1
res1	56 × 56	win 3×3				win 3×3				win 3×3			
	30×30	dim 64	$\times 2$	None		$\dim 64$	$\times 2$	None		$\dim 96$	$\times 3$	None	
		head 2				head 2				head 4			
		Conv7×7, stride=4, 128, LN								Conv7×7, stride=4, 192, LN			
res2	28×28	\sim win 3×3								win 3×3			
		dim 128	$\times 4$	None	None		$\times 4$	None		dim 192	$\times 6$	None	
		head 4			head 4				head 8				
				Conv7×	7, stric	le=4, 256, LN	1			Conv7×7, stride=384, LN			
rac 3	14 > 14			win 3×3				win 3×3				win 3×3	
1685	14 ~ 14	None		dim 256	$\times 18$	None		$\dim 256$	$\times 32$	None		dim 384	$\times 29$
					head 8				head 8				head 16
				Conv7×	7, stric	le=4, 512, LN	1			Conv7×7	7, stri	de=4, 768, LN	N
raci	$7 \vee 7$			win 7×7				win 7×7				win 7×7	
1054	1.21	None		dim 512	$\times 1$	None		dim 512	$\times 2$	None		dim 768	$\times 2$
				head 16				head 16				head 32	

 Table 8. Architectures of FLatten-CSwin models.