
Appendix for Neglected Free Lunch – Learning Image Classifiers Using
Annotation Byproducts

We include additional information in the Appendix.
In §A, you can download ImageNet-AB and COCO-AB
datasets and find the directories for front-end code for Im-
ageNet and COCO annotation tools. In §C, we present
details for our crowdsourcing-based ImageNet and COCO
re-annotations. In §D, we present extensive lists of byprod-
ucts from ImageNet-AB and COCO-AB. In §E, we present
further statistics and interesting features of the annotation
byproducts in ImageNet-AB and COCO-AB. In §F, we in-
clude additional experimental details and results that supple-
ment the main-paper results.

A. Links
Our main repository is at:

• Neglected Free Lunch (GitHub)

Download datasets at:

• ImageNet-AB (HuggingFace)

• COCO-AB (HuggingFace)

Please find the codebase for ImageNet and COCO annotation
tools in the root directory:

• ImageNet: github.com/naver-ai/imagenet-annotation-tool

• COCO: github.com/naver-ai/coco-annotation-tool

They are replications of respective original annotation tools:
[19, 15] for ImageNet and [14] for COCO.

B. Detailed comparison against previous work
We cluster the related work into two groups in Table A.

Group A: Solving image classification with additional anno-
tations (e.g. semantic segmentation) [18, 20, 5]. Group B:
Solving various vision tasks with point supervision [3, 17, 4].

It is possible to make a quantitative comparison against
methods in Group A. They solve the image classification
task with extra mask annotation costs1 to improve model
robustness. Our innovation is that we achieve this effect
without additional supervision costs. RRR [18] and Grad-
mask [20] were only tested on small-scale datasets but are
replicated in the RobustViT paper [5] for ImageNet evalua-
tion. We present a quantitative comparison in Table B with
DeiT-B2.

Our LUAB framework improves the performance on all
ImageNet benchmarks, whereas Group A methods show
mixed results. Importantly, unlike Group A methods, our
improvements do not assume the availability of GT masks.

1Mask: 80 & 280 sec/im, Cls: 1.13 & 36.3 sec/im for IN & COCO.
2ViT-B trained using the DeiT training setup [22].

Moreover, LUAB is applicable to general model types, while
RobustViT is limited to ViT variants.

Evaluation of Group B methods is not compatible, as their
target task is not image classification. We report their annota-
tion costs for point supervision in the table. Our contribution
to Group B community is the finding that weak point su-
pervision may be obtained without additional cost from the
class labelling procedure. OpenImagesV7 [4] introduces
an efficient labelling scheme, but it relies on a pre-trained
segmentation model (IRN [2]) to propose points; it is not
directly comparable in our setting.

C. Annotation and crowdsourcing details
C.1. ImageNet

We provide further details on the crowdsourced ImageNet
annotation. We hired Amazon Mechanical Turk (MTurk)
workers from the US region, as the task is described in En-
glish. The minimal human intelligence task (HIT) approval
rate for the task qualification was set at 90% to ensure a
minimal quality for the task.

Each HIT contains 10 pages of the annotation task, each
with 48 candidate images. Upon completion, the annota-
tors are paid 1.5 USD per HIT. It is difficult to convert this
amount to an exact hourly wage due to the high variance and
noise in the measured time to complete each HIT. A rough
conversion is possible through the median HIT, which took
9.0 minutes to complete. This yields an hourly wage of 10.0
USD, well above the US federal minimum hourly wage of
7.25 USD [1].

When the submitted work shows clear signs of gross neg-
ligence and irresponsibility, we reject the HIT. Specifically,
we reject a HIT if:

• the recall rate, defined as the proportion of selected
images Iselect

c among the original ImageNet subset I in
c ,

is lower than 0.333; or

• the total number of selections Iselect
c among 480 can-

didates is lower than 30 (there are 480 × 0.75 = 360
samples from ImageNet I in

c on average); or

• the annotator has not completed at least 9 out of the 10
pages of tasks; or

• the annotation is not found in our database AND the
secret hash code for confirming their completion is
incorrect.

Among 14,681 HITs completed, 1,145 (7.8%) have been
rejected. Collectively, we have paid 20, 304 USD =
13, 536 approved HITs × 1.5 USD / HIT to the MTurk an-
notators. An additional 20% fee is paid to Amazon (4, 060.8
USD). The entire procedure took place between 18 Decem-
ber 2021 and 31 December 2021.



Cost (sec/im)
Category Approach Target task (evaluation) Annotation task → Annotation ImageNet COCO

Baseline Classification Image classification cls labelling → cls labels 1.13 36.3

Ours
Classification Image classification

cls labelling →
{

cls labels
AB 1.13 36.3

(LUAB-Ours) (ImageNet, COCO)

Group A
RRR [18], Gradmask [20], Image classification cls labelling → cls labels 1.13 36.3

RobustViT [5] (ImageNet evaluation in [5]) segmentation → object masks 80* 280*

Group B

WTP [3]
Semantic segmentation cls labelling → cls labels NA** NA**

(Pascal) point labelling → points NA** NA**

UFO2 [17]
Object detection cls labelling → cls labels NA** 80***

(COCO) point labelling → points NA** 84.9†

OpenImagesV7 [4]
Instance segmentation

Point verification→
{

cls labels
points 0.8†† 2.8††

(OpenImages)

Table A: Conceptual comparison against previous work. *It takes 80 sec/polygon [14]. ImageNet & COCO have 1 & 3.5 polygons per image,
respectively. **They report results only on Pascal & COCO, respectively. ***Estimate in [17] is only theoretical and it differs from our actual time measurement
of 36.3 sec/im. †Adopting [17] to the case where 1 point/cls/im is annotated. ††[4] reports 0.8 sec/click for verifying points.

Model GT Mask IN-1K↑ IN-V2↑ IN-Real↑ IN-A↑ IN-C↑ IN-O↑ Sketch↑ IN-R↑ Cocc↑ ObjNet↑ SI-size↑ SI-loc↑ SI-rot↑ BGC-gap↓ BGC-acc↑

Our DeiT-B ✗ 81.6 70.3 81.1 26.1 64.1 58.0 33.0 45.7 76.0 31.7 56.6 35.1 41.3 6.4 18.1
+LUAB (Ours) ✗ +0.9 +1.6 +0.7 +5.0 +1.9 +0.5 +2.5 +2.7 +1.5 +3.3 +0.5 +1.7 +0.3 -0.8 +5.8

DeiT-B in [5] ✗ 80.8 69.7 - 12.9 - - 31.2 30.9 - 31.4 54.6 34.5 39.3 - -
+Gradmask [20] ✓ +0.3 +0.0 - +2.2 - - +0.0 +0.1 - +2.1 +0.6 -0.4 -0.2 - -
+RRR [18] ✓ +0.2 +0.2 - +1.9 - - -0.3 +0.2 - +2.2 +0.7 -0.1 +1.1 - -
+RobustViT [5] ✓ -0.3 -0.6 - +4.3 - - -0.3 +1.5 - +4.5 +3.4 +2.1 +3.6 - -

Table B: Quantitative comparison against prior work. We compare ours with the prior arts, including Gradmask [20], RRR [18], and
RobustViT [5] using DeiT-B on ImageNet1K and variant robustness benchmarks.

Annotation interface. We have tried nudging the anno-
tators to click more frequently on the foreground objects
by changing the cursor shape to a red circle and instruct-
ing them to “click on the object of interest” while selecting
the images. According to our pilot study, this increases the
chance of annotators clicking on the object of interest from
70.7% to 91.7% (p-value <0.0005), while not increasing the
annotation time meaningfully: 2.02 to 2.09 minutes per page
(p-value 0.456).

C.2. COCO

For COCO, we follow the ImageNet annotation setup in
§C.1 for the worker region and worker qualification.

Each annotation page contains a single image to be an-
notated. We collate 20 pages into a single human intelli-
gence task (HIT). That results in 82, 783 images× 1 HIT

20 images =
4, 140 HITs. The compensation for each HIT is 2.0 USD.
The median HIT has been completed in 12.1 minutes. This
leads to the hourly wage of 9.92 USD, which is above the
US Federal minimum wage of 7.25 USD [1].

We reject HITs based on the following criteria

• the recall rate, defined as the proportion of retrieved
classes among the existing classes, is lower on average

than 0.333; or

• the accuracy of icon location, defined as the ratio of
icons placed on the ground-truth class segmentation
mask, is lower than 0.75; or

• the annotator has not completed at least 16 out of the
20 pages of tasks; or

• the annotation is not found in our database AND the
secret hash code for confirming their completion is
incorrect.

By continuously re-posting rejected HITs, we have ac-
quired the necessary annotation and byproducts on 4140
HITs. Along the way, we have rejected 365 HITs, giv-
ing us a rejection rate 8.8%. Collectively, we have paid
8, 280 USD = 4, 140 approved HITs×2 USD / HIT to 662
MTurk annotators. An additional 20% fee is paid to Amazon
(1656 USD). The annotation took place between 9 January
2022 and 12 January 2022.

D. Byproducts details
D.1. ImageNet-AB

We explain the details of ImageNet-AB, the ImageNet1K
training set enriched with annotation byproducts. Annota-



    "imageID": "n01440764/n01440764_105",
    "originalImageHeight": 375, 
    "originalImageWidth": 500, 
    "selected": true,
    "imageHeight": 243,
    "imageWidth": 243,
    "imagePosition": {"x": 857, "y": 1976},
    "hoveredRecord": [
      {"action": "enter", "time": 1641425051},
      {"action": "leave", "time": 1641425319}
    ],
    "selectedRecord": [
      {"x": 0.540, "y": 0.473, "time": 1641425052}
    ],
    "mouseTracking": [
      {"x": 0.003, "y": 0.629, "time": 1641425051},
      {"x": 0.441, "y": 0.600, "time": 1641425052}
    ],
    "worker_id": "47DBDD543E",
    "assignment_id": "3AMYWKA6YLE80HK9QYYHI2YEL2YO6L",
    "page_idx": 3

Original Annotation

Annotation Byproducts

Figure A: Annotation byproducts from ImageNet. Worker ID
has been anonymised via non-reversible hashing. Extended version
of Figure 4.

tors use input devices to interact with different components
in the annotation interface. This results in a history of in-
teractions per input signal per front-end component. On
ImageNet, annotators interact with each image (component)
on each page with two types of input signals: mouse move-
ments and mouse clicks (Figure 3). We show the full list
of annotation byproducts in Figure A. This results in the
time series of mouse movements (mouseTracking) and
mouse clicks (selectedRecord) for every image. We
separately record whether the image is finally selected by
the annotator in the selected field. It is true when the
length of selectedRecord is an odd number.

In our work, we only demonstrate the usage of additional
selectedRecord as a proxy to the object localisation
information and show that this alone greatly enhances the
models’ robustness. However, there exist other byproducts
that may further improve the trained models. We introduce
them below and hope that future researches find ways to
maximally exploit those additional signals.

We record sufficient yet compact information to
reproduce the annotation page: x-y coordinates
(imagePosition) and the width and height
(imageWidth and imageHeight) of each image
in the annotation interface. This information can be useful
because the mouse movement pattern is highly entangled
with the page layout. For example, annotators are likely
to minimise mouse movement by following a serpentine
sequence.

We record other annotation metadata for each image,
such as the worker identifier (worker id), the identifier
for the human intelligence task (HIT) that contains this im-
age (assignment id), and the page number within the
HIT (page idx). We have anonymised the worker iden-
tifier with a non-reversible hashing function. Those meta-
data provide information for grouping the annotation in-

stances with increasing specificity: {annotations on the same
page} ⊂ {annotations from the same HIT} ⊂ {annotations
by the same worker}. Such information may be helpful for
identifying and factoring out group-specific idiosyncrasies.
For example, worker ABC may always click near the centre
of an image; we may then decide not to use her clicks as a
reliable estimate of object locations. Or we may find that the
HIT DEF was done in such a rush; we would then reduce the
weight for the set of annotations belonging to DEF.

Statistics. There are 1,281,167 ImageNet1K training im-
ages I imagenet. There were two annotation rounds. In the
first round, human intelligence tasks (HITs) containing all
1,281,167 original images are shown to the annotators. They
have re-selected 71.8% of them. This confirms the obser-
vation of [16] that 71% of the validation set samples were
re-selected in their setting. The remaining 28.2% of I imagenet

are re-packaged into a second batch of HITs and presented
to the annotators. They have additionally re-selected 14.9%
of I imagenet, resulting in the final 1,110,786 (86.7%) Ima-
geNet1K training images that are re-selected. Those selected
images now come with rich annotation byproducts, such as
the time-series of mouse traces and clicks. However, an-
notation byproducts are available even for images that are
not finally selected; they are recorded even for images that
annotators cancel the selection or simply hover the cursor
over. As a result, 1,272,225 (99.3%) of the ImageNet1K
training set have any form of annotation byproduct available.

D.2. COCO-AB

We explain the details of COCO-AB, the COCO 2014
training set enriched with annotation byproducts. COCO
interface (Figure 5) has two main components: (1) the image
on which the class icons are placed and (2) the class browsing
tool showing the class icons. The annotation byproducts
come from those two sources. See Figure B for the full list
of annotation byproducts.

The actionHistories field describes the ac-
tions performed with the mouse cursor on the image.
actionHistories list the sequence of actions with pos-
sible types add, move, and remove and the corresponding
location and time. We also record the object class of the icon.
The mouseTracking field records the movement of the
mouse cursor over the image.

Interactions with the class browsing tool leave a time
series of superclasses that the annotator refers to. They are
stored in the field categoryHistories. We also allow
interactions based on keyboard (left and right arrows); the
use of keyboard is indicated in usingKeyboard.

We record the total time spent for the annotation
(timeSpent). To provide the context of the annotation
work, we have stored the page number (page idx), the
identifier for the HIT package (assignment id), and the



    "image_id": 459214,
    "originalImageHeight": 428, 
    "originalImageWidth": 640, 
    "categories": [”car”, “bicycle”],
    "imageHeight": 450,
    "imageWidth": 450,
    "timeSpent": 22283,
    "actionHistories": [
      {"actionType": ”add”,
       "iconType": ”car”, 
       "pointTo": {"x": 0.583, "y": 0.588}, 
       "timeAt": 16686},
      {"actionType": ”add”,
       "iconType": “bicycle”, 
       "pointTo": {"x": 0.592, "y": 0.639}, 
       "timeAt": 16723}
    ],
    "categoryHistories": [
      {"categoryIndex": 1,
       "categoryName": ”Animal”,  
       "timeAt": 10815,  
       "usingKeyboard": false},
      {"categoryIndex": 10,
       "categoryName": ”IndoorObjects”,  
       "timeAt": 19415,  
       "usingKeyboard": false}
    ],
    "mouseTracking": [
      {"x": 0.679, "y": 0.862, "timeAt": 15725},
      {"x": 0.717, "y": 0.825, "timeAt": 15731}
    ],
    "worker_id": "00AA3B5E80",
    "assignment_id": "3AMYWKA6YLE80HK9QYYHI2YEL2YO6L",
    "page_idx": 8

Original Annotation

Annotation Byproducts

Figure B: Annotation byproducts from COCO. Worker ID has
been anonymised via non-reversible hashing. Extended version of
Figure 6.

anonymised identifier for the annotator (worker id).
In this work, we only use the last add action in the

actionHistories field for each object class to addition-
ally supervise the model to be aware of the actual location
of the object in the image. However, the recordings of other
interaction histories may be used in future work as additional
sources that further improve the trained models.

Statistics. Annotators have reannotated 82,765 (99.98%)
of 82,783 training images from the COCO 2014 training set.
For those images, we have recorded the annotation byprod-
ucts. We found that each HIT recalls 61.9% of the list of
classes per image, with the standard deviation ±0.118%p.
The average localisation accuracy for icon placement is
92.3%, where the standard deviation is ±0.057%p.

E. Analysis of annotation byproducts
E.1. ImageNet

We analyse the annotation byproducts in more detail. In
particular, we measure the informativeness of mouse clicks
and traces for the location of objects in an image. All anal-
yses involving the “ground-truth (GT) bounding boxes” is
performed on the 42% of the ImageNet1K training set anno-
tated with instance-wise bounding boxes.

GT bounding boxes on ImageNet. ImageNet is a highly
object-centric dataset. This is reconfirmed by the distribution
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Figure C: ImageNet GT-box statistics. Left: distribution of GT
box centres on ImageNet1K training set images. Right: localisa-
tion accuracy of random clicks N((H

2
, W

2
), σ2). We interpolate

between centre-always click (σ = 0) and uniform random click
(σ = ∞).

of the centre of the GT boxes in Figure C (left). More than
30% of the box centres are located in the 0.82% area at the
centre of the images.

We measure the localisation accuracy of random image-
agnostic clicks in Figure C (right). We experimented with the
random click distribution N((H2 ,

W
2 ), σ2) where σ ∈ [0,∞]

interpolates between the click-always-at-the-centre strategy
(σ = 0) and the uniform random click (σ = ∞). We observe
that clicking at the image centre yields 83.9% localisation
accuracy, actually greater than the localisation accuracy of
clicks 82.9%. Despite a lower overall accuracy, we will
see later in the current section that the annotators’ clicks
contain much richer information about the variation of object
locations than simple centre clicks.

As σ increases, the localisation accuracy drops and
reaches 48.2% when clicks are uniformly random σ = ∞.
The 48.2% value can be interpreted as the average bounding
box area in each image. The relatively high average area of
the objects again signifies the object-centric nature of the
ImageNet dataset.

Informativeness of clicks. We examine whether the clicks
contain information about the variation of object locations.
The analysis is not as simple as measuring the overall local-
isation accuracy, since the dataset is highly object-centric:
we have seen above that centre clicks already give 83.9% lo-
calisation accuracy, greater than the localisation accuracy of
clicks 82.9%. The majority of information about the object
location is contained in 16.1% of the samples where a simple
centre-click strategy cannot guarantee a correct localisation.
In this subset of images where objects are not at the centre,
the localisation accuracy of clicks is 56.5%. This implies
great information content, as simple centre clicks will give
0% accuracy on this subset.

To further break down the localisation accuracy based
on the location of objects and click locations, we plot the
location-wise click accuracy in Figure D (right column). For
reference, we also plot the distribution of GT box centres and
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Figure D: Statistics of clicks. Left column: distribution of GT
box centres and clicks in ImageNet1K images. Right column:
localisation accuracy of clicks at each GT box centre location and
click location.

clicks in the left column. We observe that the localisation
accuracy at each GT box location and the click location
remain > 40%, except at the outermost image borders. This
confirms the overall informativeness of clicks for the object
locations, despite the severe bias towards the image centre
in the dataset.
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Figure E: Statistics for mouse traces before click. Last N: last N
mouse traces before click. Trace quantile: division of each mouse
trace from the “entering image” event to the “click” event in the
equal number of mouse track records. Time quantile: same as
trace quantile, except that bins are groups by the time.

Informativeness of mouse traces. Annotation byproducts
include not only clicks but the full history of mouse traces
over each image. We measure the localisation accuracy
of the mouse traces between entering the image and click.
The results are reported in Figure E. Last few mouse trace
records before click (Last N) show a mild drop in accuracy
(from 82.9% to ∼ 65% at 8 traces before click); therefore,
the last few points before click may give useful localisation
information. The trace and time quantile results show that the
localisation accuracy is very low when the mouse enters an
image (39.3%). The accuracy increases up to the point when
the user clicks (82.9%). We observe that the last 10% of the
mouse traces (both for trace and time quantile) are still fairly
precise with accuracy > 80%. The above observations imply
the possibility that one may also utilise a few mouse trace
records before the click event to obtain a weak localisation
supervision based on scribbles [3].

Object box

Figure F: Click histogram relative to GT box on ImageNet.
Distribution of click positions normalised against the GT object
box frame at [0, 1]× [0, 1].

Click are systematically biased to the top-right corner.
Figure F shows the distribution of clicks relative to the GT
object boxes. We observe that the mode of the distribution
is close to the centre, but slightly biased to the upper-right
corner. The tail of the distribution is more drastically biased
towards the top-right corner, almost forming a comet-like
shape. We conjecture that browsing through rows of im-
ages makes annotators enter an image through the top side
and leave it through the right side. And this leaves such a
systematic error around the actual location of the objects.
Given the systematic bias, it would be an interesting future
research direction to either post-hoc calibrate click locations
or nudge annotators to reduce the top-right-corner bias for
better object localisation.

E.2. COCO

Distribution of objects in COCO. COCO is designed to
contain multiple objects in the same image. We verify this by
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Figure H: Icon histogram relative to the GT box on COCO.
Distribution of final “add” positions normalised against the GT
object box frame at [0, 1]× [0, 1].

computing the histogram of the centres for COCO bounding
boxes. Figure G (left) shows the distribution. Compared
to ImageNet (Figure C left), we observe more diffused box
centres in COCO. As a result, we observe more diffused
object centres for the COCO objects within an image. There
are less than 4% instances in the centre of the image; the
ratio was greater than 30% for ImageNet.

Icon placements. Example locations of icon placements
are shown in Figure I. The distribution of icon placement
locations on COCO images is shown in Figure G (right).
We observe a distribution that is similar to the box-centre
distribution, confirming the fairly precise icon placement
accuracy of 92.3% (§D.2). We also measure the systematic
bias in icon placement with respect to ground-truth bounding
boxes in Figure H. We observe no visible bias. This is in
stark contrast to the ImageNet click locations in Figure F.
We hypothesise that the tagging interface lets annotators be
more focused and be careful with the relative location of the
icons with respect to the object regions.

Figure I: COCO final icon locations. We visualise random training
images; points are the final location of the add action for each
category in actionHistories.

154320 (94%)  add
  4128 ( 3%)  add-move
  2778 ( 2%)  add-remove-add
   344 ( 0%)  add-move-move
   271 ( 0%)  add-remove-add-remove-add
   191 ( 0%)  add-move-remove-add
   114 ( 0%)  add-remove-add-move
    67 ( 0%)  add-remove-add-remove-add-remove-add
    37 ( 0%)  add-move-remove-add-move
    29 ( 0%)  add-move-move-remove-add
    29 ( 0%)  add-move-move-move
    27 ( 0%)  add-move-remove-add-remove-add
    19 ( 0%)  add-remove-add-remove-add-remove-add-remove-add
    17 ( 0%)  add-remove-add-remove-add-move
    12 ( 0%)  add-remove-add-move-remove-add
    11 ( 0%)  add-move-move-move-move

Figure J: Histogram of action sequences on COCO. Only show-
ing action sequences with > 10 occurrences.

Action sequences in COCO annotations. Annotators
can perform three types of actions with the icons: add,
move, and remove. In Figure J, we show the histogram of
the action sequences for icons that are eventually placed
in the images. The most frequent action sequence is a
singleton add with 94% frequency. The next common
sequence is add-move with 3% frequency: the annotator
corrects the position once. The third most frequent sequence
is add-remove-add with 2% frequency: the annotator
removes the placed icon and then adds it back. This could in-
dicate the annotator’s lack of confidence in either the position
of the object or the existence of the object. There are other
interesting behaviours. For example, 19 action sequences



repeat the addition and removal: (add-remove)*4-add.
We are not sure if this behaviour is due to the annotator’s
uncertainty or is due to no particular reason (for exam-
ple, just for fun). In fact, the longest action sequence
was add-remove-add-move-(remove-add)*7-move

-move-(remove-add)*2 (24 actions).

Recall by category and object sizes. We study whether
the size of objects contributes to the successful annotation
of the object. Figure K shows the scatter plot for class-wise
recall versus class-wise average size. Class-wise recall mea-
sures the chance that an instance of the class in an image is
annotated via icon placement. Class-wise sizes are measured
by binning the object box by bins [0, .22, .42, .62, .82, 1]. We
observe a linear correlation between the object sizes and
the recall. This indicates that larger object categories are
more likely to be annotated than smaller ones. There are
interesting exceptions. For example, sports equipment such
as “tennis racket”, “skateboard”, “baseball racket”, “frisbee”
and “sports ball” tends to be annotated successfully com-
pared to their small size. We expect this to be related to
the saliency of objects. Sports equipment is likely designed
to attract human attention or humans are trained to detect
such objects well. In the opposite regime, we find furniture
such as “bed” and “dining table” is less frequently annotated
compared to its size. Again, we believe its relative saliency
results in low recall. We tend to perceive such furniture more
as a background object that is easy to be overlooked in a
scene.

F. Additional experimental details
Training details. For the ImageNet experiments, we
use all the default training hyperparameters provided in
the DeiT [22] codebase3 including training epochs 300
with warmup epochs 5, batch size 1024, learning rate 5e-
4× batchsize

512 , weight decay 0.05. In addition, we use the de-
fault hyperparameters for data augmentations and regular-
izations – RandAug [6] 9/0.5 (i.e. rand-m9-mstd0.5-inc1),
Label smoothing [21] 0.1, Stochastic Depth 0.1 with the
linear decay of death rate [13], and Random Erasing [11, 7]
0.25; Mixup [24] and Cutmix [23] with the probabilities 0.8
and 1.0, respectively with switching probability 0.5, and the
repeated augmentation [12] with 3 repetitions. We train the
models with the image size of 224×224 and the test crop
ratio of 0.875 based on the basic ImageNet training strat-
egy – RandomResizedCrop, RandomFlip, and ColorJitter
following the standard protocol [9, 8, 22]. All the models
are trained with the multi-task objective using λ=10.

For the COCO experiments, there is no standard con-
figuration for the image classification task, so we search
for hyperparameter sets for convergence of the baseline net-

3https://github.com/facebookresearch/deit

works. As a result, we set training epochs to 100 (5 for
warmup epochs), batch sizes to 128, image size to 224×224,
learning rate to 2e−5, and weight decay to 0.01. We use
the standard data augmentation of the aforementioned basic
ImageNet training strategy for all models. In addition to
this, we set the minimum range of RandomResizedCrop to
0.1, and use Random Erasing [11, 7] with 0.5. Specifically,
we only use We use the AdamP [10] optimizer for training
all backbone networks. For multi-task learning, we observe
that small λ works well with the small backbone network,
and large λ is more effective for larger backbone networks.
Specifically, we used λ=5 for ResNet18 and ViT-Ti. We
used λ=50 for ResNet50, ResNet152, ViT-S, and ViT-B.
Figure L shows that, across all λ, LUAB generally performs
better than the models trained with Random points (Rand)
or only with task supervision (i.e. λ=0).

Visualisation of the predicted points. We visualise the
points predicted by our LUAB-trained models with the anno-
tation byproducts. Figure M and N show the points predicted
by our ViT-B in random ImageNet validation images and by
our ResNet50 in random COCO validation images, respec-
tively. We observe the predicted points are aligned with the
ground-truth object locations.

Using annotation byproducts for data-efficient learning.
Table F shows ViT-Ti performances after training with vary-
ing amounts of training data. The result shows that we may
use 95% of ImageNet training data without decreasing the
performance when annotation byproducts are utilised.

Using annotation byproducts to pool features. In the
main paper, we have introduced a multi-task learning ap-
proach with the point-regression objective for the annotation
byproducts. Here, we show another possibility to use the an-
notation byproducts. We use them as ground-truth attention
for a weighted pooling for a convolutional neural network.
We design a network architecture with a point-guided (i.e. at-
tentive) pooling layer that amplifies the features correspond-
ing to the point coordinates. The experimental result in Ta-
ble C shows that this simple method (without any extensive
hyperparameters tuning) improves the overall performance
of ResNet18 and ResNet50. As for the multitask learning
baseline, this attentive pooling approach improves classifi-
cation performance, OOD generalisation, and resilience to
spurious background correlations.

Exploration of loss functions. Smooth ℓ1 (Huber) loss is
a natural initial baseline; it has been effective for a similar
task of bounding box regression in object detection. We
trained ResNet50 with the MSE and Smooth ℓ1 loss with
β ∈ {0.1, 1, 2}. The results in Table E show that MSE can
be an alternative, but the Huber loss is still the best choice.
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Figure K: Recall versus size for each COCO category.

Model Params IN-1K↑ IN-V2↑ IN-Real↑ IN-A↑ IN-C↑ IN-O↑ Sketch↑ IN-R↑ Cocc↑ ObjNet↑ SI-size↑ SI-loc↑ SI-rot↑ BGC-gap↓ BGC-acc↑

R18 11.7M 71.8 59.7 79.4 1.9 37.1 52.6 21.9 33.8 42.7 21.8 47.5 22.2 31.9 8.6 22.4
+LUAB 11.7M 72.0 59.9 79.5 1.8 37.8 52.6 21.7 33.8 43.6 22.0 47.6 23.5 32.2 7.4 20.1

R50 25.6M 77.2 65.4 83.5 4.6 39.8 57.5 25.4 37.2 53.9 27.7 54.2 31.6 39.3 6.0 28.8
+LUAB 25.6M 77.4 65.8 83.5 5.4 44.1 56.2 25.1 37.6 54.3 27.7 54.7 31.7 40.2 6.4 29.2

Table C: An alternative baseline of using annotation byproducts. We report the performance of the models using annotation byproducts
as guidance of feature pooling location at training. The performance improvements here show that this method can also become a potential
approach for using annotation byproducts to improve the robustness and localization abilities. A more sophisticated method upon this
baseline would improve the numbers more.

Model Params IN-1K↑ IN-V2↑ IN-Real↑ IN-A↑ IN-C↑ IN-O↑ Sketch↑ IN-R↑ Cocc↑ ObjNet↑ SI-size↑ SI-loc↑ SI-rot↑ BGC-gap↓ BGC-acc↑

ViT-Ti 5.7M 71.8 58.8 78.6 4.8 41.4 59.1 18.6 29.6 38.7 20.1 40.6 16.5 26.2 12.1 13.6
+LUAB 5.7M 73.0 60.2 79.8 5.7 42.5 59.9 19.4 30.8 42.6 22.1 43.4 20.0 28.7 10.9 16.1

ViT-S 22.1M 74.1 60.8 80.4 5.1 45.0 55.0 22.9 34.7 47.0 20.5 42.9 18.7 27.8 10.5 16.7
+LUAB 22.1M 75.3 63.0 81.6 6.3 47.7 59.1 24.4 36.5 46.6 23.6 47.8 22.6 32.2 8.7 19.7

ViT-B 86.6M 75.1 61.9 81.2 6.4 48.8 56.8 24.3 36.7 48.9 21.3 47.6 22.1 31.9 8.9 18.9
+LUAB 86.6M 75.9 63.0 82.1 7.6 49.9 56.5 26.4 37.2 50.3 23.2 47.4 22.5 31.7 8.0 18.9

Table D: Performance of ImageNet-AB on ImageNet1K without sophisticated training recipes. We extend the study in Table ?? by
training ViTs [8, 22] with simpler training recipes. We note more significant improvements due to ImageNet-AB than shown in Table ??.
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ResNet50 LUABCO
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)

Figure L: COCO mAP vs. λ.

Model IN-1K↑ IN-V2↑ IN-Real↑ ObjNet↑ SI-size↑ SI-loc↑ SI-rot↑

ℓ1 (β=1) 77.5 65.2 78.5 28.5 55.6 33.5 40.9
ℓ1 (β=2) 77.4 65.2 78.2 28.0 55.2 32.0 40.5
ℓ1 (β=0.1) 76.5 64.0 77.7 27.1 53.2 30.0 38.6
MSE 77.6 65.4 78.4 28.9 55.5 32.6 40.7

Table E: Exploration of loss functions for regression.

Training data ImageNet +Annotation byproducts

% Data used 100% 100% 95% 90% 80%
ImageNet1K acc (%) 72.8 72.9 72.9 72.4 71.7

Table F: Data-efficient training with LUAB. The availability of
AB lets us use slightly less amount of training data (100%→95%).
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Figure M: Model prediction visualisation (ImageNet). We visu-
alise some validation images in ImageNet with the ground truth
boxes and the predicted points by our model.

Impact of LUAB without strong augmentations. In the
main paper, we have considered the backbones trained with
strong augmentations (e.g. DeiT) to make the results more
relevant to the state-of-the-art models. Here, we examine
the impact of LUAB without such strong augmentations. We
choose ViTs as the baseline models because they usually
suffer from data deficiency [8, 22] and require stronger aug-
mentations. We follow the training setup provided in original
ViT [8]; we limit the strong data augmentation or regulari-
sations previously used. Table D shows the performances
without strong augmentations such as RandAug [6], Stochas-
tic Depth [13], Random Erasing [11, 7], Mixup [24], Cut-

(a) Image ID: 116244

(b) Image ID: 416960

(c) Image ID: 430052

(d) Image ID: 442761

(e) Image ID: 217554

Figure N: Model prediction visualisation (COCO). We visualise
COCO validation images with the ground truth mask and predicted
points by our model.

mix [23] in the DeiT training regime [22]. We use a training
setup similar to the one in the ViT paper [8]: learning rate 1e-
3 and weight decay 0.3. All the models are trained with the
multi-task objective using λ=10 again. We observe that the
performance improvements due to LUAB are much greater
than those in Table 1. We conclude that the actual impact of
annotation byproducts is greater when the performances are
not optimised with the use of strong augmentations.
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