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The supplementary provides additional details on various aspects related to the paper, which are organized as
follows:

1) Extra Experiments Analysis,

2) Detailed Network Architectures,

3) Localization Algorithm,

4) Computational statistics,

5) Limitations,

6) More Visualization Results.

1. Extra Experiments Analysis

1.1. Evaluations Metrics

Object counting: In line with previous studies [23, 7, 21], we employ the following metrics to evaluate counting
performance: Mean Absolute Error (MAE), root Mean Squared Error (MSE), and mean Normalized Absolute Error
(NAE). Given a test set comprising K images, we define Ck and Ĉk as the ground truth count and predicted count,
respectively, for the k-th image.
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where some negative samples (i.e., images with no objects) are excluded from the calculation of NAE to avoid zero
denominators.

Object Localization. To assess the localization performance, we employ three standard metrics: Precision
(Pre.), Recall (Rec.), and F-measure (F1-m). We determine the True Positive (TP), False Positive (FP), and False
Negative (FN) values by using the Hungarian algorithm to compare the two point sets from the prediction results
(Pp) and the ground truth (Pg). The metrics are then calculated as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

F-measure = 2 Pre.×Rec.
Pre.+Rec.

(2)

where true positives, false positives, and false negatives are determined by matching predicted locations and ground
truth locations with a threshold σ. When assessing crowd localization on datasets with box-level annotations, such
as NWPU-Crowd [21] and FDST [3], we define the distance threshold σ as

√
w2 + h2 for each ground-truth
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point, where w and h represent the width and height of the box, respectively. For datasets without box-level
annotations, we follow the approach of IIM [4] and use proxy box annotations to determine the distance threshold.
For URBAN TREE [18], the distance threshold is set at 6 meters, or 10 pixels (where each pixel represents
0.6m× 0.6m).
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Figure 1. The left plot shows the scale distribution of head box areas in the NWPU-Crowd dataset, where Ai denotes the
corresponding range. On the right plot, we compare the scale generalization ability on the NWPU-Crowd val set among
several methods, including our baseline methods BL1 (concatenation fusion) and BL2 (FPN [9] fusion), as well as the pre-
trained model of AutoScale [22]. Our proposed method, STEERER, exhibits substantial improvement in scale generalization
for large objects.

1.2. Quantification of Scale Generalization

Most scale-aware object counting methods typically assess scale generalization ability by comparing simple and
easily calculated metrics such as MAE and MSE. However, these metrics lack specificity. In this work, we propose
a fine-grained analysis of scale generalization by dividing objects in a dataset into six scale-related groups and
evaluating instance-level counting accuracy within each group. Our analysis is conducted on the NWPU-Crowd
val set, which has separated objects into six groups A0 ∼ A5 based on head box areas (as shown in Fig. 1 left).
For instance, to evaluate scale-instance-level density prediction accuracy within a group A0, we use the K ground
truth box annotations Bo = {xi, yi, wi, hi}Ki=o as indices to retrieve the corresponding predicted and ground truth
density slices Spre

0 and Sgt
0 , respectively. We then calculate this cluster’s scale-instance-level density prediction

accuracy using Eq. (3).
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Tab. 1 tabulates the scale generalization performance on AutoScale [22], two baselines, and our proposed
STEERER. Looking at this table together with Fig. 1, we find that the traditional multi-scale feature fusion meth-
ods and the learn-to-scale method both suffer from serious performance reduction on large objects. STEERER,
however, can obtain higher performance on medium-to-large objects while maintaining similar accuracy on small
objects. Especially, STEERER achieves the accuracy of 73.0% and 55.9% on A4(10, 000 ∼ 100, 000pixels) and
A5(100, 000+pixels) level, respectively, which significantly improve the scale generalization ability compared with
the second-best results. Fig. 1 also shows that STEERER makes a balanced generalization ability on all scales.
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Table 1. The comparison of scale generalization ability.

Method ACCA0(%) ACCA1(%) ACCA2(%) ACCA3 (%) ACCA4(%) ACCA5 (%)

BaseLine1-Concat 52.9 59.2 67.9 75.6 40.0 22.6

BaseLine2-FPN [9] 56.1 60.8 68.2 76.2 53.0 21.8

AutoScale [22] 52.3 58.3 67.2 76.4 56.1 25.1

STEERER (Ours) 53.8 59.2 69.2 80.7 73.0 55.9

1.3. Localization Performance with VGG19-backbone

Similar to the counting experiments, we also utilized the VGG19-BN backbone architecture [14] to assess the
generalization performance of STEERER in the localization task. In this regard, we present the localization results
of STEERER with VGG19 as the backbone. As shown in Tab. 2, our proposed method outperforms several existing
methods, including detection-based methods such as TinyFaces [6] and LSC-CNN [1], a density-based method
(RAZ Loc [10]), and a segmentation-based method (IIM [4]). Specifically, on the SHHA dataset, STEERER with
VGG19 achieves a 77.0 F-measure, while IIM achieves a 71.3 F-measure, although their backbones, VGG19 and
VGG16, have similar volumes.

Table 2. Comparison of the crowd localization performance on other crowd datasets. The best and second-best results are
shown in red and blue, respectively.

Method Backbone Label
ShanghaiTech Part A ShanghaiTech Part B UCF-QNRF NWPU
F1-m Pre. Rec. F1-m Pre. Rec. F1-m Pre. Rec. F1-m Pre. Rec.

TinyFaces [6] ResNet-101 Box 57.3 43.1 85.5 71.1 64.7 79.0 49.4 36.3 77.3 56.7 52.9 61.1
RAZ Loc [10] VGG-16 Point 69.2 61.3 79.5 68.0 60.0 78.3 53.3 59.4 48.3 59.8 66.6 54.3
LSC-CNN [1] VGG-16 Point 68.0 69.6 66.5 71.2 71.7 70.6 58.2 58.6 57.7 - - -
IIM [4] VGG-16 Point 71.3 74.0 68.8 82.1 92.0 74.1 68.4 73.1 64.2 73.2 77.9 69.2
IIM [4] HRNet Point 73.3 76.3 70.5 83.8 89.8 78.6 71.8 73.7 70.1 76.0 82.9 70.2

STEERER VGG-19 point 77.0 76.4 77.8 85.9 85.8 86.0 74.1 75.4 73.0 73.7 74.6 72.7
STEERER HRNet point 79.8 80.0 79.4 88.0 88.8 87.1 75.5 78.6 72.7 77.0 81.4 73.0

1.4. Ablate with baselines

The results in Tab. 3 compare the proposed method, STEERER, with two baselines: Baseline 1, which fuses four
resolution features using an upsampling+concatenation operation, and Baseline 2, which uses FPN for bottom-to-
up fusion. The table shows that STEERER achieves a significant improvement in counting accuracy compared to
the two baselines, indicating its effectiveness in fusing multi-scale features. Furthermore, the results demonstrate
that STEERER is more efficient for counting than the classical fusion methods in terms of multi-scale feature
processing.

1.5. Datasets

Tab. 4 presents a summary of the details of the counting datasets with different classes used in this paper,
including six crowd-counting datasets, two plant-counting datasets, and one vehicle dataset.

2. Network Architectures

Tab. 6 elaborates the detailed network architecture of STEERER, including two multi-scale feature representa-
tion backbones and counting head.

Multi-scale Feature Representation Backbones. Tab. 5 explains the VGG19-BN [14] and HRNet-W48
[20] configurations in STEERER. In this table, “Conv{k(3,3),c48,s1}-BN-R” represents the convolutional operation
with kernel size of 3 × 3, output channels of 48, and stride size of 1. The “BN” and “R” mean that the Batch
Normalization and ReLU layers are added to this convolutional layer. For the VGG-19 backbone, we call it from the
model zoo of Pytorch [12], so we use its feature list to describe each resolution. The details of “BOTTLENECK”
and “BASIC” are the same as HRNet-W48. Note that we remove the final fuse layer in HRNet-W48.

Feature Selection and Inheritance Adaptor. Tab. 5 also illustrates the specific setting of FSIA. Note that
the input channels for FSIA are 96 channels in the lowest resolution and 48 channels in other resolutions. The
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Table 3. The counting performance of the proposed STEERER and two baseline methods.

Method SHHA (MAE/MSE) NWPU (MAE/MSE)

Baseline1: HRNet+concat 60.4 98.5 72.1 356.9
Baseline2: HRNet+FPN 60.4 96.3 78.8 365.7

STEERER HRNet 54.6 86.9 63.7 309.8

Table 4. The summary of the main-stream counting datasets.

Class Datasets Total Count Images

Crowd

SHHA [23] 241,677 482
SHHB [23] 88,488 716
FDST [3] 394,081 15,000
UCF-QNRF [7] 1,251,642 1,525
JHU-CROWD++ [15] 1,515,005 4250
NWPU-Crowd [21] 2,133,375 5,109

Plant
MTC [11] 100 361
URBAN TREE [18] 39,993 573

Vehicle TRANCOS [5] 46,796 1244

Table 5. The architecture of STEERER, including two backbones and the proposed FSIA.

Module Res. VGG19-bn
HRNet-W48

Stage1 Stage 2 Fuse Stage 3 Fuse Stage 4

Backbone

4× features[0:26] BOTTLENECK BASIC × 1 ✔ BASIC × 4 ✔ BASIC × 3
8× features[26:39] BASIC × 1 ✔ BASIC × 4 ✔ BASIC × 3
16× features[39:52] BASIC × 4 ✔ BASIC × 3
32× copy(features[39:52]) BASIC × 3

FSIA
UFN SMG SFN

Conv{k(3,3),c48,s1}-BN-R Conv{k(3,3),c48,s1}-BN-R Conv{k(3,3),c48,s1}-BN-R
Conv{k(3,3),c48,s1}-BN-R Conv{k(3,3),c48,s1}-BN-R Conv{k(3,3),c48,s1}-BN-R

Conv{k(3,3),c2,s1}-BN-R

scale-customized feature and scale-uncustomized feature output by FSIA are both 48 channels, and the counting
head only accepts the 96 channels’ input. Therefore, each resolution at the end of the backbone is followed by a
channel down-sample layer to adapt the channel number to 48 except for the 96 in the lowest resolution.

Counting Head Localization. Tab. 6 details the configurations of counting heads for regressing the density
map. In this table, “Conv{k(3,3),c64,s1}-BN-R” represents the convolutional operation with kernel size of 3 × 3,
output channels of 64, and stride size of 1. The “BN” and “R” mean that the Batch Normalization and ReLU layers
are added to this convolutional layer. In counting head, we regulate its input channels to 96 in each resolution, and
it contains two upsampling operations so that the final output density map in 4× resolution has the same spatial
dimension as the input image.

Table 6. Detailed architecture of counting head.

Counting Head

Upsample(scale factor=2)

Conv{k(3,3),c64,s1}-BN-R

Conv{k(3,3),c32,s1}-BN-R

Upsample(scale factor=2)

Conv{k(3,3),c16,s1}-BN-R

Conv{k(3,3),c1,s1}-R
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Algorithm 1 The code of simple but effective Object Localization Algorithm in a PyTorch-like style.

# density_map: single channel density map, size:[b,c,h,w]

# gaussian_maximum: hyper-parameters, the maximum value of the Gaussian kernel used to generate the ground truth density map

# patch_size: hyper-parameters, set a patch size to find the region’s maximum value in a given density map

# threshold: hyper-parameters, a threshold to filter the background noise

def object_localization(density_map, gaussian_maximum,patch_size=128, threshold=0.15):

# padding density map and make it can be divided evenly by patch_size

_,_,h,w = density_map.size()

if h % patch_size != 0:

pad_dims = (0, 0, 0, patch_size - h % patch_size)

h = (h // patch_size + 1) * patch_size

density_map = F.pad(density_map, pad_dims, "constant")

if w % patch_size != 0:

pad_dims = (0, patch_size - w % patch_size, 0, 0)

w = (w // patch_size + 1) * patch_size

density_map = F.pad(density_map, pad_dims, "constant")

# Find the region maximum and limit its upper bound and lower bound with the threshold

# and the gaussian_maximum

region_maximum = F.max_pool2d(density_map, (patch_size, patch_size), stride=patch_size)

region_maximum = region_maximum*threshold

region_maximum[region_maximum<threshold*gaussian_maximum] = threshold*gaussian_maximum

region_maximum[region_maximum>0.3*gaussian_maximum] = 0.3*gaussian_maximum

# upsample region_maximum map, make it has the same spatial dimension with density_map

region_maximum = F.interpolate(region_maximum, scale_factor=patch_size)

# use max_pooling to find the local_maximum in density map

local_maximum = F.max_pool2d(density_map, (3, 3), stride=1, padding=1)

local_maximum = (local_maximum == density_map).float()

local_maximum = local_maximum * density_map

# judge the valid position in local_maximum map

local_maximum[local_maximum < region_maximum] = 0

local_maximum[local_maximum > 0] = 1

# find the index of object positions

points = torch.nonzero(density_map)[:,[0,1,3,2]].float() # b,c,h,w->b,c,w,h

return points

3. Object Localization Algorithm

The object locations in STEERER are located from its predicted density map. The ground-truth density map
is generated by convoluting an annotated dot map with a Gaussian kernel. On the contrary, we can extract the
head positions by localizing the local maxima. As illustrated in Algorithm 1. Specifically, we use a 3× 3 pooling
operation to find the local maxima. These maximum values, however, are not always the truth positives because
of the background noise and the small pooling size (compared with the Gaussian kernel (15× 15)). Therefore, we
make a region maximum map to filter some backbone ground noises, which is based on a patch-level maximum and
a threshold multiplied by the Gaussian prior knowledge to filter out false positives. Some visualizations results in
Fig. 2 demonstrate that our localization algorithm is stable and barely locates multiple positions in an object.

4. Computational statistics

Table 7 shows the computation statistics of two baselines, typical scale-aware counting methods (AutoScale [22],
SASNet [17], Chfl [13], MAN [8], DM-Count [19] and HMoDE [2] ), and our proposed STEERER, including
parameter size, Multiply-Accumulate Operations (MACs). Flops measure the computation complexity of the
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model, and we test it by inputting the RGB image with a size of 768×1024. All models are tested under the
same condition. AutoScale 1, SASNet 2 and HMoDE 3 et al . are tested with their released code. In Table 7,
STEERER with HRNet-W48 has the lowest MACs even with the second largest parameters. Overall, STEERER
is an energy-saving object counting method and has the potential to be a real-time counting and localization system
with further optimization.

Table 7. The computational statistics comparison between the AutoScale [22], SASNet [17], HMoDE [2] and the proposed
STEERER.

Method AutoScale SASNet HMoDE Chfl MAN DM-Count
STEERER

VGG19 HRNet-W48
Params(MB) 16.7 38.9 82.6 21.5 40.4 21.5 30.6 64.6

Flops (GMACs) 332.7 697.8 572.4 323.9 310.3 323.8 345.4 283.4

5. Limitations

While our work achieves promising object counting and localization performance, it has two limitations:
Slightly complex implementation compared with baselines: The implementation of our proposed count-

ing method, STEERER, is slightly more complex compared to traditional baselines. During the training phase,
STEERER outputs four density maps to determine the optimal resolution for a given patch. As a result, the
training process of STEERER involves several additional details compared to classical counting methods. This
increased complexity may pose a challenge during implementation; however, it should be noted that this limitation
only applies to the training stage. The inference stage of STEERER is as simple as traditional object counting
methods.

Despite the additional complexity during training, the performance gains achieved by STEERER make it a
promising approach for counting objects in complex scenes with varying scales and densities. Furthermore, the
proposed method can be optimized through further research and development to improve its overall efficiency and
ease of implementation.

Hyper-parameters fine-tuning: The Patch-winner Determination Principle (PWDP) employed in our pro-
posed method requires setting a patch size in advance. We set the patch size to 256 × 256 based on experiments
conducted on the QNRF dataset, instead of searching for an optimal value for each dataset. This decision is made
due to the limited time and the significant number of experiments required. Specifically, in the case of QNRF,
when patch sizes are set to 128×128, 192×192, and 320 × 320, the resulting MAE/MSE values are 77.3/136.8,
77.0/134.7, and 80.5/139.8, respectively, which are not as good as the 256×256 patch size (74.3/128.3). Based on
these experiment results, we fix this hyperparameter for all datasets to demonstrate the robustness of our method.
However, we acknowledge that there may be better patch size settings for other datasets, as the density and scale
ranges vary among different datasets.

In summary, while we have decided to fix the patch size hyperparameter for all datasets, we recognize that this
may not be the optimal choice for every scenario. Therefore, we encourage further research to investigate and
optimize patch sizes for different datasets and scenarios to achieve the best possible performance.

By using clean energy sources, we can significantly reduce the carbon footprint of the model training process and
contribute to a more sustainable future. It is essential to consider the environmental impact of new technologies
and take proactive measures to mitigate their negative effects. This can be achieved through the use of energy-
efficient hardware, the optimization of algorithms to reduce computational requirements, and the use of clean
energy sources. By promoting sustainable practices, we can ensure that the development and implementation of
new technologies do not come at the cost of our environment.

6. More visualization results

In Fig. 2, we compare the quality of predicted density maps between some scale-aware counting methods and
STEERER. The figure demonstrates that AutoScale [22], SASNet [17], and HMoDE [2] produce relatively coarse

1https://github.com/dk-liang/AutoScale
2https://github.com/TencentYoutuResearch/CrowdCounting-SASNet
3https://github.com/ZPDu/Redesigning-Multi-Scale-Neural-Network-for-Crowd-Counting
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maps, despite accurately estimating crowd counts. In contrast, STEERER achieves fine-grained density map
prediction across a wide range of scales.

The visual comparison highlights the superior performance of STEERER in generating high-quality density
maps with fine-grained details. This is a critical advantage for many real-world applications that require accurate
localization and tracking of individuals in crowded scenes. The ability to generate fine-grained density maps can
significantly enhance the effectiveness of crowd management, security monitoring, and urban planning. Our results
demonstrate that STEERER is a promising approach for addressing the challenges of scale-aware crowd counting,
with potential applications in various domains.

In Fig. 3, we present high-resolution visualization samples from the UCF-QNRF dataset. Compared to our
highly competitive baseline, as illustrated in the two red boxes, STEERER significantly improves the regression
of large objects. This improvement in regression performance can lead to better localization performance for large
objects. In Fig. 4, we provide additional samples with diverse scales and densities from the UCF-QNRF dataset.
The figure demonstrates that STEERER is capable of generating high-quality density maps across a wide range
of scales and densities, surpassing the performance of the competitive baseline method.

Fig. 6 shows the predicted density maps of STEERER on the NWPU validation set. These figures demonstrate
that STEERER does well in producing density maps and locating people in various complicated crowded scenes
with diverse scales.

Fig. 5 compares the P2PNet [16] and STEERER with the localization performance on SHHA dataset. From
these samples, we find that STEERER is better at handling big objects and suppressing the noise of the background.

Fig. 7, Fig. 8, and Fig. 9 display more examples on other object counting and localization. In all these figures,
STEERER produces high-quality density map prediction and accurate locations.
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Figure 2. Visualization samples on SHHA dataset. The red and green points in input images denote ground truth locations
and the predicted locations with our proposed STEERER, respectively. The results of AutoScale [22], SASNet [17], and
HMoDE [2] come from their pretrained models.
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High Resolution Image: 4264 x 3088

STEERER Baseline+FPN

Figure 3. Super high-resolution visualization samples on UCF-QNRF dataset. Compared with our highly competitive
baseline, STEERER does a better job of estimating the Gaussian density of large objects. The red and green points input
images denote ground truth locations and the predicted locations, respectively. Please enlarge it for a better view.
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Figure 4. Visualization of diversity scales samples on UCF-QNRF dataset. The red and green points input images denote
ground truth locations and the predicted locations, respectively. Please enlarge it for a better view.
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P2PNet STEERER

Figure 5. Localization samples comparisoned with P2PNet [16] on SHHA dataset .The red and green points input images
denote ground truth locations and the predicted locations, respectively. Please enlarge it for a better view.
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Figure 6. Localization samples comparisoned with P2PNet [16] on SHHA dataset .The red and green points input images
denote ground truth locations and the predicted locations, respectively. Please enlarge it for a better view.
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Figure 7. Visualization samples on MTC dataset. The red and green points input images denote ground truth locations and
the predicted locations, respectively. Please enlarge it for a better view.
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Figure 8. Visualization samples on TRANCOS dataset. The red and green points input images denote ground truth locations
and the predicted locations, respectively. Please enlarge it for a better view.
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Figure 9. Visualization samples on TREE dataset. The red and green points input images denote ground truth locations
and the predicted locations, respectively. Please enlarge it for a better view.
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