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A. Implementation Details

Implementation The original DreamBooth was imple-
mented on Imagen [12] and we conduct our experiments
based on its StableDiffusion [9] implementation [16].
DreamBooth [10] and Custom Diffusion [7] are imple-
mented in StableDiffusion with Diffusers library [15]. For
LoRA [6], we use our own implementation for fair compar-
ison, in which we also fine-tune the 1-D weight kernels, and
use rank-1 for 2-D and 4-D weight kernels. This results in
a slightly larger delta checkpoint (of size 5.62MB) than the
official LoRA implementation [11].
Learning rate Our experiments show that the learning rate
for these spectral shifts needs to be much larger (1,000
times, e.g. 10−3) than the learning rate used for fine-tuning
the full weights. For 1-D weights that are not decomposed,
we use either the original learning rate of 10−6 to prevent
overfitting or a larger learning rate to allow for a more rapid
adaptation of the model, depending on the desired trade-off
between stability and speed of adaptation.

B. Cross-Attention Regularization

Multi-subject We explore an extension of adding regular-
ization to the cross-attention maps during fine-tuning. The
resulting pipeline is illustrated in Fig. 12. This regulariza-
tion is motivated by the visualization of the cross-attention
maps of fine-tuned models. As shown in Fig. 24, the dog’s
special token (“sks”) attends largely to the panda. There-
fore, we use MSE on non-corresponding regions of the
cross-attention maps to enforce separation between the two
subjects. Intuitively, this loss promotes the dog’s special to-
ken to focus solely on the dog and vice versa for the panda.
Our initial experiment on full weight fine-tuning shows that
adding this regularization greatly eliminates the stitching ar-
tifact.
Single-subject Our observations also show that the cross-
attention map associated with the special token may attend
to unwanted areas, even in the case of single-subject gen-
eration. For instance, as shown in Fig. 20, the attention of
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the special token “[V1]” leaks to the background (whereas
the attention of “[V2]” does not). To address this issue, we
explore the use of regularization on cross-attention maps to
improve single-subject generation. The main idea is to limit
the attention of the special token to be no more spread-out
than that of the coarse class token (e.g. “dog”). To achieve
this, we first obtain a binary mask Mt indicating the sub-
ject by thresholding the coarse class token’s attention map.
Then, we add a L2 regularization loss on the special token’s
attention map AV

t , as follows:

Lreg = ||AV
t − sg(AV

t ⊙Mt)||22, (8)

where ⊙ denotes elementwise multiplication and sg is a
stop gradient operator. The results of using this CA regular-
ization are compared to the case without regularization in
Fig. 19, and as expected, the regularization reduces overfit-
ting to the background.

C. Single Image Editing
DDIM Inversion We show comparisons of with and with-
out DDIM inversion [13] using ours (“SVD”), LoRA [6]
(“LoRA”), and DreamBooth (“Full”) on single-image edit-
ing in Fig. 22. If inversion is not used, DDIM sampler with
η = 0 is applied. If inversion is employed, we use DDIM
sampler with η = 0.5 and α = 0, except for edits in Fig. 22-
(d,f,h) where η = 0.9 and α = 0.9. Interestingly, for the
chair example (row 2) we need to inject large amount of
noise to get desired edits. For other edits (a,b,e,g,i,j) DDIM
inversion improves editing quality and alignment with input
images for “SVD”, but makes results worse for “Full” in ed-
its (b,g,i) and for “LoRA” in edits (b,i). We can conclude
that DDIM inversion improves editing quality and align-
ment with input images for non-structural edits when us-
ing our spectral shift parameter space. We also observe that
LoRA in general tends to underfit the input image, as shown
in (c,d,e,i) (without inversion).
Comparison with other methods Furthermore, we com-
pare our method with the popular Instruct-Pix2Pix [1] in
Fig. 23 (marked as “ip2p”). The comparison is not entirely
fair as Instruct-Pix2Pix does not require fine-tuning on in-
dividual images. Nevertheless, it is worth investigating fast
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Figure 12: Cut-Mix-Unmix data-augmentation for multi-subject generation. The figure shows the process of Cut-Mix-
Unmix data augmentation for training a model to handle multiple concepts. The method involves (a) manually constructing
image-prompt pairs where the image is created using a CutMix-like data augmentation [17] and the corresponding prompt is
written as, for example, “photo of a [V2] sculpture and a [V1] dog”. The prior preservation image-prompt pairs are created
in a similar manner. The objective is to train the model to separate different concepts by presenting it with explicit mixed
samples. (b) To perform unmix regularization, we use MSE on non-corresponding regions of the cross-attention maps to
enforce separation between the two subjects. The goal is to encourage that the dog’s special token should not attend to the
panda and vice versa. (c) During inference, a different prompt, such as “photo of a [V1] dog sitting besides a [V2] sculpture”.

OR

Which image contains both objects from the two input images with a consistent background?

Figure 13: Example of human evaluation. Each method is
represented by a collage of images with two real images on
the left (labeled “A” and “B”) and one synthesized image on
the right (labeled “C”).

personalized adaptation and avoiding per-image fine-tuning
in future work.

Subject Combinations Human Preference (SVD vs. Full)
Teddy + Tortoise 53.2% : 46.8%

Dog + Cat 62.9% : 37.1%
Dog + No-Face 65.0% : 35.0%
Dog + Panda 62.0% : 38.0%

Table 2: Human evaluation results comparing “SVD” and
“Full” for different subject combinations, with 1000 human
ratings for each combination.

D. Multi-Subject Generation

User study In Tab. 2, we present the results of human eval-
uation comparing our method (“SVD”) and the full weight
fine-tuning method (“Full”). For each of the four subject
combinations, 1000 ratings were collected. Participants
were shown two generated images side-by-side and were
asked to choose their preferred image or indicate that it
was “hard to decide” (4.1%, 1.2%, 2.1%, and 2.2% respec-
tively). Visual examples are given in Fig. 13.

Analysis of Cut-Mix-Unmix In this section, we present
additional analysis of the Cut-Mix-Unmix data augmenta-
tion technique (without unmix regularization on the cross-
attention maps). Fig. 18 illustrates the results of the default
“left and right” augmentations, which still generate mean-
ingful relations such as (a) “wear”, (b) “in”, and (c) “ride”.
In the case of (a), “full” overfits to the augmentation layout.
In our initial experiments, we also randomly split the left
and right images and observed similar results as with a fixed
1:1 ratio. In (d), the “up and down” augmentation exhibits
similar behavior to “left and right”. Nevertheless, we con-
cur that introducing a random layout (particularly with our
proposed cross-attention regularization) could further miti-
gate overfitting. We leave this study for future work.

Negative prompt To perform negative prompting, we re-
purpose the prior-preservation prompts as negative prompts
cneg . Recall that Classifier-free guidance (CFG) [5] extrap-



Figure 14: Text- and image-alignment scores for single-subject generation. We perform SVDiff fine-tuning on 12 subsets of
UNet layers across 5 subjects.

(a) Single Subject (b) Single Image

Figure 15: Correlation of individually learned spectral shifts for different subjects/images. The cosine similarities between
the spectral shifts of two subjects are averaged across all layers and plotted. The diagonal shows average similarities between
two runs with different learning rates. High similarities are observed between conceptually similar subjects.

olates the conditional score by a scale factor s > 1,

ϵ̂θ,s(zt|{c, ∅}) = s · ϵ̂θ(zt|c) + (1− s) · ϵ̂θ(zt|∅). (9)

Similar to [14], we replace the null-conditioned score
ϵ̂θ(zt|∅) in Eq. (9) by ϵ̃θ,β defined as following,

ϵ̃θ,β(zt|{cneg, ∅}) = β · ϵ̂θ(zt|∅) + (1− β) · ϵ̂θ(zt|cneg)
(10)

where 0 < β < 1. This can be easily extended to including
multiple negative prompts. Fig. 21 shows a few examples
of using negative prompts to remove the stitching artifacts
introduced by Cut-Mix-Unmix. We hypothesize that this is
because the model is trained to associate the prior prompt
to the stitching style so negative prompting can help remov-
ing the stitching edges. However, we observe that negative
prompting may not always help.
Extensions We show a preliminary extension of Cut-Mix-
Unmix to Attend-and-Excite [2]. As shown in Fig. 17, Cut-

Mix-Unmix helps better disentangle respective visual fea-
tures of the dog and the cat. It is also possible to extend
and integrate our method to other attention-based meth-
ods [4, 14, 3].

E. Analysis on Spectral Shifts

Fine-tuning with fewer steps Here we show results of fast
adaptation for single subject generation in Fig. 27. This set-
ting is slightly different from the experiments in the main
text since we limit the fine-tuning steps as 100 without
prior-preservation loss [10] (for main results we fine-tune
500-1000 steps with prior-preservation loss). Thus we tune
the learning rate for each method to balance between faith-
fullness and realism [8]. The learning rates we used are as
follows:

• SVDiff: 1-D weights 2 × 10−3, 2-D and 4-D weights
5× 10−3
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Figure 16: Simple style transfer results with SVDiff . Changing coarse class word: (d) and (i); Appending “in style of”: (e)
and (j); Combined spectral shifts: (a,b,f,g).
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Figure 17: Results for Cut-Mix-Unmix with Attend-and-Excite [2]. Even without Cut-Mix-Unmix, Attend-and-Excite suc-
cessfully separate the dog and the cat by design, despite the color of the cat is slightly leaked to the dog. Cut-Mix-Unmix
helps better disentangle respective visual features of the dog and the cat.

• LoRA [6]: 1-D weights 2×10−3, 2-D and 4-D weights
1× 10−4

• DreamBooth [10]: 1-D weights 1 × 10−3, 2-D and
4-D weights 5× 10−6

In Fig. 27, the performance comparison of our method,
LoRA [6] and DreamBooth [10] is shown under fast fine-
tuning setting. The results indicate that all three methods
perform similarly, except for the “No-Face” sculpture in (c)
where LoRA shows underfitting and DreamBooth exhibits
overfitting. In (e), SVDiff also shows overfitting, which
could be a result of the large learning rate used.
Rank Fig. 25 shows the results of limiting the rank of the
spectral shifts of 2-D and 4-D weight kernels during train-
ing. Two examples are shown for each of the three subjects,
one with the training prompt (to “reconstruct” the subject)
and one with an edited prompt. Results show that the model
can still reconstruct the subject with rank 1, but may strug-
gle to capture details with an edited prompt when the rank of
spectral shift is low. The visual differences between recon-

structed and edited samples are smaller for the Teddybear
than the building and panda sculpture, potentially because
the pre-trained model already understands the concept of a
Teddybear.
Correlations We present the results of the correlation anal-
ysis of individually learned spectral shifts for each subject
in Fig. 15. Each entry in the figure represents the aver-
age cosine similarities between the spectral shifts of two
subjects, computed across all layers. The diagonal entries
show the average cosine similarities between two runs with
the learning rate of 1-D weights set to 10−3 and 10−6, re-
spectively. The results indicate that the similarity between
conceptually similar subjects is relatively high, such as be-
tween the “panda” and “No-Face” sculptures or between the
“Teddybear” and “Tortoise” plushies.
Scaling Fig. 26 demonstrates the effect of scaling spec-
tral shifts (labeled as “SVD”, Σδ′ = diag(ReLU(σ + sδ))
with scale s) and weight deltas (marked as “full”, W ′ =
W + s∆W with scale s). Samples are generated using the
same random seed. Scaling both the spectral shift and full
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Figure 18: Additional analysis of Cut-Mix data augmentation.
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Figure 19: Comparison of Cross-Attention (CA) Regularization. The results show the effectiveness of the CA regularization
in reducing overfitting to the background. The models were fine-tuned using 800 steps with the prior-preservation loss and
all comparisons were generated using the same random seed.
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Figure 20: Analysis of cross-attention maps of the fine-
tuned model. As shown, the dog’s special token (“sks”)
also attends to background areas.

weight delta affects the presence of personalized attributes
and features. The results show that scaling the weight delta
also influences attribute strength. However, a scale value
that is too large (e.g. s = 2) can cause deviation from the
text prompt and result in dark samples.

Style transfer We demonstrate the effect of style transfer
using our proposed method. We show that by using a single
fine-tuned model, the personalized style can be transferred
to a different class by changing the class word during infer-
ence, or by adding a prompt such as “in style of”. We also
show that by summing two sets of spectral shifts (as dis-
cussed above), their styles can be mixed. The results show
different outcomes of different style-mixing strategies, with
changes to both the class and personalized style.

F. Image Attribution

Avocado plushy: https://unsplash.com/
photos/8V4y-XXT3MQ.

Pink chair: https://unsplash.com/photos/
1JJJIHh7-Mk.

Brown and white puppy: https://unsplash.
com/photos/brFsZ7qszSY, https://
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“photo of a 𝑉! dog sitting besides a 𝑉" sculpture”

Positive: “photo of a 𝑉! dog sitting besides a 𝑉" sculpture”
Negative: “a dog and a sculpture”, “a sculpture and a dog”

Figure 21: Using negative prompt helps to remove stitching
artifact for both “SVD” and “Full”.

unsplash.com/photos/eoqnr8ikwFE, https:
//unsplash.com/photos/LHeDYF6az38, and
https://unsplash.com/photos/9M0tSjb-cpA.

Crown: https://unsplash.com/photos/
8Dpi2Mb1-PM.

Bedroom: https://unsplash.com/photos/
x53OUnxwynQ.

Dog with flower: https://unsplash.com/
photos/Sg3XwuEpybU.

Statue-of-Liberty: https://unsplash.com/
photos/s0di82cRiUQ.

Beetle car: https://unsplash.com/photos/
YEPDV3T8Vi8.

Building: https://finmath.rutgers.edu/
admissions/how-to-apply and luvemakphoto/
Getty Images.

Teddybear, tortoise plushy, grey dog, and cat im-
ages are taken from Custom Diffusion [7]: https:
//www.cs.cmu.edu/˜custom-diffusion/
assets/data.zip.
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Figure 22: Results for single image editing with DDIM inversion [13]. If inversion is not used, DDIM sampler with η = 0 is
applied. If inversion is employed, we use DDIM sampler with η = 0.5 and α = 0 (α is for slerp defined in ??), except for
edits in (d,f,h) where η = 0.9 and α = 0.9. Results show that DDIM inversion improves editing quality and alignment with
input images for non-structural edits when using our spectral shift parameter space. As shown, DDIM inversion can have
adverse effects on results for “Full” and “LoRA”, e.g. (b) making the room empty, (i) changing the color to purple.
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Figure 23: Comparison of our method and Instruct-Pix2Pix [1] (marked as “ip2p”) on single-image editing. The instructions
are displayed in bold and italicized purple text. Results show that Instruct-Pix2Pix tends to alter the overall color scheme and
struggles with significant or structural edits, as seen in (a) emptying the room and (d) zoom-in view.

<|startoftext|>        photo                    of                          a                         sks dog                    sitting                besides                    a                          pk    p                  sculpture       <|endoftext|>

𝑉! 𝑉"

Figure 24: Analysis of cross-attention maps of the fine-tuned model without using unmix regularization. Visualization is
obtained by Prompt-to-Prompt [4]. As shown, the dog’s special token (“sks”) attends largely to the panda.
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Figure 25: Effect of limiting rank of spectral shifts. The figure displays examples of the subject’s reconstruction and edition
with varying ranks of the spectral shifts. Results indicate that a lower rank leads to limited ability to capture details in the
edited samples, with better performance observed for a subject that is easier for the model to adapt to (i.e. Teddybear).
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Figure 26: Effects of scaling spectral shifts (Σδ′ = diag(ReLU(σ + sδ))) and weight deltas (W ′ = W + s∆W ). Note that
this scale is different from the classifier-free guidance scale. Scaling both spectral shift and weight delta changes the attribute
strength, with too large a scale causing deviation from the text prompt and visual artifacts.
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Figure 27: Single subject generation when fine-tuned with fewer steps. All models are fine-tuned for 100 steps without
prior-preservation loss [10] (for main results we fine-tune 500-1000 steps with prior-preservation loss).
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Figure 28: Visual samples of fine-tuning the spectral shifts of a subset of layers in the UNet.


