
Efficient Diffusion Training via Min-SNR Weighting Strategy
Supplementary Material

In the supplementary material, we first provide the proof
of Theorem 1 in Section 1. Then we derive the relation-
ship between loss weights of different predicting targets in
Section 2. In Section 3, we provide more details on the net-
work architecture, training and sampling settings. Finally,
we present more visual results in Section 4.

1. Proof for Theorem 1
First, we introduce the Pareto Optimality mentioned in

the paper. Assume the loss for each task is Lt(θ), t ∈
{1, 2, . . . , T} and the respective gradient to θ is ∇θLt(θ).
For simplicity, we denote Lt(θ) as Lt. If we treat each
task with equal importance, we assume each loss item
L1,L2, . . . ,LT is decreasing or kept the same. There ex-
ists one point θ∗ where any change of the point will leads to
the increase of one loss item. We call the point θ∗ “Pareto
Optimality”. In other words, we cannot sacrifice one task
for another task’s improvement. To reach Pareto Optimal-
ity, we need to find an update direction δ which meet:

〈
∇θL1

θ, δ
〉

≤ 0〈
∇θL2

θ, δ
〉

≤ 0
...〈

∇θLT
θ , δ

〉
≤ 0

(1)

⟨·, ·⟩ denotes the inner product of two vectors. It is worth
noting that δ = 0 satisfies all the above inequalities. We
care more about the non-zero solution and adopt it for up-
dating the network parameter θ. If the non-zero point does
not exist, it may already achieve the “Pareto Optimality”,
which is referred as “Pareto Stationary”.

For simplicity, we denote the gradient for each loss item
∇θLt as gt. Suppose we have a gradient vector u to satisfy
that all ⟨gt,u⟩ ≥ 0, t ∈ {1, 2, . . . , T}. Then −u is the
updating direction ensuring a lower loss for each task.

As proposed in [11], ⟨gt,u⟩ ≥ 0,∀t ∈ {1, 2, . . . , T} is
equivalent to mint ⟨gt,u⟩ ≥ 0. And it could be achieved
when the minimal value of ⟨gt,u⟩ is maximized. Thus the
problem is further converted to:

max
u

min
t

⟨gt,u⟩

There is no constraint for the vector u, so it may become
infinity and make the updating unstable. To avoid it, we add
a regularization term to it

max
u

min
t

⟨gt,u⟩ −
1

2
∥u∥22. (2)

And notice that the max function ensures the value is al-
ways greater than or equal to a specific value u = 0.

max
u

min
t

⟨gt,u⟩ −
1

2
∥u∥22

≥ min
t

⟨gt,u⟩ −
1

2
∥u∥22

∣∣∣∣
u=0

= 0,

which also means maxu mint ⟨gt,u⟩ ≥ 1
2∥u∥

2
2 ≥ 0.

Therefore, the solution of Equation 2 satisfies our optimiza-
tion goal of ⟨gt,u⟩ ≥ 0,∀t ∈ {1, 2, . . . , T}.

We define CT as a set of n-dimensional variables

CT =

{
(w1, w2, . . . , wT )|w1, w2, . . . , wT ≥ 0,

T∑
t=1

wt = 1

}
,

(3)

It is easy to verify that

min
t

⟨gt,u⟩ = min
w∈CT

〈∑
t

wtgt,u

〉
. (4)

We can also verify the above function is concave with
respect to u and α. According to Von Neumann’s Minmax
theorem [12], the objective with regularization in Equa-
tion 2 is equivalent to

max
u

min
w∈CT

{〈∑
t

wtgt,u

〉
− 1

2
∥u∥22

}
(5)

= min
w∈CT

max
u

{〈∑
t

wtgt,u

〉
− 1

2
∥u∥22

}
(6)

= min
w∈CT

{〈∑
t

wtgt,u

〉
− 1

2
∥u∥22

}∣∣∣∣∣
u= 1

2

∑
t wtgt

(7)

= min
w∈CT

1

2

∥∥∥∥∥∑
t

wtgt

∥∥∥∥∥
2

2

. (8)

1



Finally, we achieved Theorem 1 in the main paper.

2. Relationship between Different Targets
The most common predicting target is in ϵ-space. Loss

for prediction in x0-space and ϵ-space can be transformed
by the SNR loss weight.

Lθ = ∥ϵ− ϵ̂θ(xt)∥22

=

∥∥∥∥ 1

σt
(xt − αtx0)−

1

σt
(xt − αtx̂θ(xt))

∥∥∥∥2
2

=
α2
t

σ2
t

∥x0 − x̂θ(xt))∥22

= SNR(t) ∥x0 − x̂θ(xt))∥22 ,

where ϵ̂θ is the network to predict the noise and x̂θ is to
predict the clean data.

Prediction target v = αtϵ− σtx0 is proposed in [9], we
can derive the related loss

Lθ = ∥vt − vθ(xt)∥22
= ∥(αtϵ− σtx0)− (αtϵ̂θ(xt)− σtx̂θ(xt))∥22
= ∥αt (ϵ− ϵ̂θ(xt))− σt (x0 − x̂θ(xt))∥22

=

∥∥∥∥αt
αt

σt
(x̂θ(xt)− x0)− σt (x0 − x̂θ(xt))

∥∥∥∥2
2

=

∥∥∥∥α2
t + σ2

t

σt
(x0 − x̂θ(xt))

∥∥∥∥2
2

=
1

σ2
t

∥(x0 − x̂θ(xt))∥22

=
α2
t + σ2

t

σ2
t

∥(x0 − x̂θ(xt))∥22

= (SNR(t) + 1) ∥(x0 − x̂θ(xt))∥22

3. Hyper-parameter
Here we list more details about the architecture, training

and evaluation setting.

3.1. Architecture Settings

The ViT setting adopted in the paper are as follows,
We use ViT-Small for face generation on CelebA 64 ×

64. Besides, we adopt ViT-Base as the default backbone
for the ablation study. To make relative fair comparison
with U-ViT, we use a 21-layer ViT-Large for ImageNet
64 × 64 benchmark. To compare with former state-of-the-
art method DiT [7] on ImageNet 256 × 256, we adopt the
similar setting ViT-XL with the same depth, hidden size,
and patch size.

In the paper, we also evaluate our method’s robustness to
model architectures using the UNet backbone. For ablation

Model Layers Hidden Size Heads Params

ViT-Small 13 512 6 43M
ViT-Base 12 768 12 88M
ViT-Large 21 1024 16 269M
ViT-XL 28 1152 16 451M

Table 1: Configurations of our used ViTs.

study, we adjust the setting based on ADM [2] to make the
parameters and FLOPs close to ViT-B. The setting is

• Base channels: 192

• Channel multipliers: 1, 2, 2, 2

• Residual blocks per resolution: 3

• Attention resolutions: 8, 16

• Attention heads: 4

We also conduct experiments with the same architecture
(296M) in ADM [2] on ImageNet 64 × 64. After 900K
training iterations with batch size 1024, it could achieve an
FID score of 2.11.

For high resolution generation on ImageNet 256 × 256.
We use the 395M setting from LDM [8], which operates on
the 32× 32× 4 latent space.

3.2. Training Settings

The training iterations and learning rate have been re-
ported in the paper. We use AdamW [5, 4] as our default
optimizer. (β1, β2) is set to (0.9, 0.999) for UNet back-
bone. Following [1], we set (β1, β2) to (0.99, 0.99) for ViT
backbone.

3.3. Sampling Settings

If not otherwise specified, we only use EDM’s [3] Heun
sampler. We only adjust the sampling steps for better re-
sults. For ablation study with ViT-B and UNet, we set the
number of steps to 30. For ImageNet 64 × 64 in Table 4,
the number of steps is set to 20. For ImageNet 256× 256 in
Table 5, the number of sampling steps is set to 50.

4. Additional Results
4.1. Ablation Study on Pixel Space

In the paper, most of the ablation study is conducted on
ImageNet 256 × 256’s latent space. Here, we present the
results on ImageNet 64 × 64 pixel space. We adopt a ViT-
B model as our backbone and train the diffusion model for
800K iterations with batch size 512. Our predicting targets
are x0 and ϵ and they are equipped with our proposed simple



Min-SNR-γ loss weight (γ = 5). We adopt the pre-trained
noisy classifier at 64 × 64 from ADM [2] as conditional
guidance. We can see that the loss weighting strategy con-
tributes to the faster convergence for both x0 and ϵ.

200 400 600 800

Training Iterations (K)

10

20

30

40

F
ID

ε + const

ε + min{snr, 5}
x0 + const

x0 + min{snr, 5}

Figure 1: Ablate loss weight design in pixel space (Ima-
geNet 64 × 64). We adopt DPM Solver [6] to sample 50k
images to calculate the FID score with classifier guidance.

4.1.1 Min-SNR-γ on EDM

We also apply our Min-SNR-γ weighting strategy on the
SoTA “denoiser” framework EDM. We find that our strat-
egy can also help converge faster in such framework in
Figure 2. The specific implementation is to multiply
min{SNR,5}

SNR in EDMLoss from official code1. We keep the
same setting as official ImageNet-64 training setting, in-
cluding batch size and optimizer. Due to the limit of com-
pute budget, we did not train the model as long as that in
EDM [3] (about 2k epochs on ImageNet). We use 2nd Heun
approach with 18 steps (NFE=35). The curve in Figure 2 re-
flects the FID’s changing with training images.

4.2. Comparison with UGD

We compare our methods with UGD under the same
computation cost in Figure 8. For UGD, first, it requires
computing the gradients among all the timesteps (1000 by
default), then it needs hundreds of optimization steps (250
steps following [10]) to compute the optimal loss weight.
Thus it takes about 3.3 minutes per iteration on 16G-V100
GPUs. However, our method needs about 0.2 seconds for
each iteration. Though we can speed up UGD with some
implementation improvements, it’s still 20 times slower
than our method. Thus it’s infeasible for practical use.

1https://github.com/NVlabs/edm.git

50 100 150 200

Training Images (M)

10

20

30

40

F
ID

sc
or

e

EDM

EDM + min{snr, 5}

Figure 2: Effect of Min-SNR-γ on EDM [3].

0 100 200 300 400

Training Cost (16G-V100 GPU Hours)

0

200

400

F
ID

S
co

re

1M training iteration

1K training iteration

UGD Min-SNR (Ours)

Figure 8: UGD trains 1000 times slower than Min-SNR.

4.3. Visual Results on Different Datasets

We provide additional generated results in Figure 9-12.
Figure 9 shows the generated samples with UNet backbone
on CelebA 64×64. Figure 10 and Figure 11 demonstrate the
generated samples on conditional ImageNet 64×64 bench-
mark with ViT-Large and UNet backbone respectively. The
visual results on CelebA 64× 64 and ImageNet 64× 64 are
randomly synthesized without cherry-pick.

We also present some visual results on ImageNet 256 ×
256 with our model which can achieve the FID 2.06 in Fig-
ure 12.

4.4. Variance of Our Results

We evaluated the performance of our model using 3 dif-
ferent random seeds and calculated the mean ± standard
deviation to be 2.06 ± 0.01. This demonstrates that our re-
ported results are robust to randomness.

4.5. Consistency of Sampler

We opt for the 2nd Heun Sampler owing to its robustness
and efficiency. Each method picked different samplers to
achieve their best performance, e.g., U-ViT in Tab.3 adopts
EM-1000 sampling and uses 50-step DPM-solver in Tab.5.
ADM-G leverages an additional noisy classifier for sam-



Figure 9: Additional generated samples on CelebA 64× 64. The samples are from UNet backbone with 1.60 FID.



Figure 10: Additional generated samples on ImageNet 64× 64. The samples are from ViT backbone with 2.28 FID.



Figure 11: Additional generated samples on ImageNet 64× 64. The samples are from UNet backbone with 2.14 FID.



Figure 12: Additional generated samples on ImageNet 256× 256. The samples are from ViT backbone with 2.06 FID.



pling. iDDPM even adopts a two-stage non-uniform sam-
pling. We report the best results from their paper. These
tables can prove our method’s strong results on different
datasets. Meanwhile, Tab.1 and Tab.2 adopt the same sam-
pler for a fair comparison to demonstrate the effectiveness.

References
[1] Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li,

Hang Su, and Jun Zhu. All are worth words: A vit back-
bone for diffusion models. arXiv preprint arXiv:2209.12152,
2022. 2

[2] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 2, 3

[3] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Informa-
tion Processing Systems, 2022. 2, 3

[4] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Rep-
resentations, 2014. 2

[5] I. Loshchilov and F. Hutter. Decoupled weight decay regu-
larization. In International Conference on Learning Repre-
sentations, 2018. 2

[6] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffu-
sion probabilistic model sampling in around 10 steps. ArXiv,
abs/2206.00927, 2022. 3

[7] William Peebles and Saining Xie. Scalable diffusion models
with transformers. arXiv preprint arXiv:2212.09748, 2022.
2

[8] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 2

[9] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations, 2022. 2

[10] Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. Advances in neural informa-
tion processing systems, 31, 2018. 3

[11] Jianlin Su. Talking about multi-task learning (2): By the way
of gradients, Feb 2022. 1

[12] John Von Neumann and Oskar Morgenstern. Theory of
games and economic behavior, 2nd rev. 1947. 1


