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Additional details or results are collected in this ap-
pendix.

A. Datasets
Experiments are conducted on four popular benchmark

datasets: miniImageNet [20, 15], tieredImageNet [16],
CIFAR-FS [1], and FC-100 [13].

miniImageNet. This dataset is very popular in few-shot
image classification. It is a subset of ImageNet [17] and
contains 100 classes with 600 images per class. We use the
split provided in [15] to divide the 100 classes into disjoint
64 training, 16 validation, and 20 test classes.

tieredImageNet. This dataset is also a subset of Ima-
geNet [17] and the hierarchical structure of ImageNet is
used when it is created. It includes 608 classes from 34
super-classes, with a total of 779,165 images. The 34 super-
classes are divided into disjoint 20 training, 6 validation
and 8 test super-classes to achieve better separation. Cor-
respondingly, the 608 classes are divided into disjoint 351
training, 97 validation, and 160 test classes.

CIFAR-FS. This dataset is created based on CI-
FAR100 [8]. It includes 100 classes with 600 images per
class. The 100 classes are divided into disjoint 64 training,
16 validation, and 20 test classes.

FC-100. This dataset is also created based on CI-
FAR100 [8] and includes 100 classes with 600 images per
class. It uses a split strategy similar to tieredImageNet to in-
crease the difficulty of the resulting few-shot image classi-
fication tasks. Correspondingly, the 100 classes are divided
into disjoint 60 training, 20 validation, and 20 test classes.

B. Implementation details
Our training procedure consists of two stages: pretrain-

ing and finetuning. It is to be noted that only the training
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Figure A1. Illustration of finetuning losses of our CPEA. Experi-
ments are conducted on miniImageNet.

set of the corresponding dataset is used for pretraining and
finetuning.

Pretraining. We pretrain the backbone, i.e., ViTS/16,
by using the strategy proposed in [25, 6] and mostly stick-
ing to the hyperparameter settings reported. Specifically,
two global crops with a crop scale of (0.4, 1.0) and 10 local
crops with a crop scale of (0.05, 0.4) are used. The out-
put dimension of the project head is set to be 8,192-d. The
prediction ratios and variances of random Masked Image
Modelling is set to be (0, 0.3) and (0, 0.2), respectively. The
resolution of input images is set to be 224×224. Four A100
40G GPUs are used to pretrain the ViT-S/16 and the total
number of training epochs is set to be 1,600. To match our
computing resources, the batch size is set to be 512. The
optimizer used is AdamW [9] and the linearly ramped-up
learning rate of 5e−4× batchsize/256 is carried out in the
first 10 epochs.

Finetuning. After pretraining, the project head with an
output dimension of 8,192-d is removed and a new project
head with an output dimension of 384-d is added to the
ViTS/16. The whole pipeline is finetuned by minimizing
Eq. (6) using the episodes randomly sampled from the train-



(a) Task 1 without CPEA (b) Task 2 without CPEA (c) Task 3 without CPEA (d) Task 4 without CPEA

(e) Task 1 with CPEA (f) Task 2 with CPEA (g) Task 3 with CPEA (h) Task 4 with CPEA

Figure A2. Patch embedding visualization of four more randomly sampled 5-way 1-shot classification tasks with one query image per class.
(a), (b), (c), and (d) show the visualization results without CPEA. (e), (f), (g), and (h) show the corresponding visualization results with
CPEA. CPEA concentrates patch embeddings by class, thus making them class-relevant. Experiments are conducted on miniImageNet.

(a) (b)

Figure A3. Class-aware embedding visualization. Two more dif-
ferent sampling results are given in (a) and (b), respectively, with
100 class-aware embeddings per class. The class-agnostic embed-
ding is denoted by the black “diamond”. After interacting with
images from different classes, the output states of class-agnostic
embedding are class-aware. Experiments are conducted on mini-
ImageNet.

ing classes. The optimizer used is Adam [7]. The global
initial learning rate is set to be 0.001, which is halved ev-
ery 500 episodes, and the learning rate of the ViT-S/16 is
always kept to be one percent of the global learning rate.
The weight decay is set to be 0.001 and the total number of
episodes is set to be 10,000.

C. Ablation study
Convergence property. Figure A1 shows the finetun-

ing losses of our CPEA. It can be observed that our CPEA
converges after 8k episodes in both the 1-shot and 5-shot
settings. These observations indicate that our CPEA could
converge in a proper time.

Patch embedding visualization. More patch embed-

Method Backbone #Params 5-shot
ProtoNet [19] ResNet-12 ≈ 12.4M 79.46±0.48

FEAT [22] ResNet-12 ≈ 12.4M 82.05±0.14

DeepEMD [23] ResNet-12 ≈ 12.4M 82.41±0.56

COSOC [10] ResNet-12 ≈ 12.4M 85.16±0.42

DeepBDC [21] ResNet-12 ≈ 12.4M 84.46±0.28

LEO [18] WRN-28-10 ≈ 36.5M 77.59±0.12

CC+rot [5] WRN-28-10 ≈ 36.5M 79.87±0.33

FEAT [22] WRN-28-10 ≈ 36.5M 81.11±0.14

PSST [3] WRN-28-10 ≈ 36.5M 80.64±0.32

MetaQDA [24] WRN-28-10 ≈ 36.5M 84.28±0.69

OM [14] WRN-28-10 ≈ 36.5M 85.29±0.41

FewTURE [6] ViT-T/16 ≈ 5.0M 81.10±0.61

FewTURE [6] ViT-S/16 ≈ 22.0M 84.51±0.53

CPEA (ours) ViT-T/16 ≈ 5.0M 84.62±0.39

CPEA (ours) ViT-S/16 ≈ 22.0M 87.06±0.38

Table A1. Impact of the model size on the few-shot classification
performance. Experiments are conducted on miniImageNet.

ding visualization results are shown in Figure A2. It can be
observed that with CPEA, the patch embeddings are clus-
tered by class. This means that the patch embeddings are
made class-relevant by CPEA. It is to be noted that PCA is
used for visualization.

Class-aware embedding visualization. More class-
aware embedding visualization results of images from dif-
ferent classes are shown in Figure A3. After interacting
with images from different classes, the output states of
class-agnostic embedding are class-aware. It is to be noted
that PCA is used for visualization.

Model size. Since the few-shot training sets are com-



Model Image resolution 5-shot
DeepEMD [23] 84×84 → 224×224 82.41 → 78.12
BML [26] 84×84 → 224×224 83.59 → 81.57
IE [12] 84×84 → 224×224 84.35 → 79.12
CPEA (ours) 224×224 87.06

Table A2. Impact of the image resolution on the few-shot clas-
sification performance. Experiments are conducted on miniIma-
geNet.

parably small (e.g. 38.4K images in miniImageNet [20] vs.
1.28M images in ImageNet [17]), it has been shown that
adopting bigger networks does not help improve perfor-
mance [2, 11]. In other words, increasing the number of
parameters on its own does not lead to better few-shot clas-
sification performance. Table A1 shows the impact of the
model size on few-shot classification performance. It can be
observed that 1) With less than one seventh of the number of
parameters of WRN-28-10, our CPEA achieves comparable
performance. 2) With roughly the same number of param-
eters of WRN-28-10, our CPEA outperforms the counter-
parts by a large margin. 3) Our CPEA benefits from the
increased model size.

Image resolution. We follow the common practice of
ViTs [4] to take images with a resolution of 224×224 as
input, which is higher than traditional CNN-based few-shot
image classification methods [23, 26, 12] (e.g., 84×84). It
is to be noted that increasing the image resolution on its own
does not lead to better few-shot classification performance.
Table A2 shows the impact of the image resolution on the
few-shot classification performance. It can be observed that
higher resolution always leads to performance degradation.
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