
BaRe-ESA: A Riemannian Framework for Unregistered Human Body Shapes
- Supplementary Material -

Emmanuel Hartman1, Emery Pierson2,4, Martin Bauer1,3, Nicolas Charon3, Mohamed Daoudi4,5

Florida State University, Tallahassee, Florida, USA 1,
University of Vienna, Vienna, Austria2

University of Houston, Houston, Texas, USA3

Univ. Lille, CNRS, Centrale Lille, Institut Mines-Télécom, UMR 9189 CRIStAL, Lille, F-59000, France4,
IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Digital Systems, Lille, F-59000, France5

1. Formulas and implementations of mesh in-
variant similarity metrics

In the paragraphs below, we add a few details about the
similarity metrics used in the registration procedure and for
the evaluation and comparison of the different methods.

First, we remind that the Hausdorff distance between two
shapes [q0] and [q1] is given by the formula:

dH([q0], [q1]) = max

{
sup

x0∈[q0]

inf
x1∈[q1]

∥x0 − x1∥,

sup
x1∈[q1]

inf
x0∈[q0]

∥x1 − x0∥
}

In our numerical experiments, we use the approximate im-
plementation provided by libigl [8]. Note that this metric is
typically very sensitive to outliers.

In contrast, the Chamfer distance [4, 6] provides a
smoother version of the above and, given two point clouds
[q0] and [q1], is defined as:

d([q0], [q1]) =
1

N0

∑
x0∈[q0]

inf
x1∈[q1]

∥x0 − x1∥

+
1

N1

∑
x1∈[q1]

inf
x0∈[q0]

∥x1 − x0∥.

We use the Pytorch implementation of Thibault Groueix1.
One of the downsides of this metric when applied to discrete
surfaces, however, is that it is not necessarily robust to local
changes of mesh density (and thus not truly mesh invariant)
since it is designed as a distance between point clouds.

To address that particular issue, as a final measure of re-
construction quality and fidelity metric for the latent code

1https://github.com/ThibaultGROUEIX/
ChamferDistancePytorch

retrieval approach, we rely on the varifold distance intro-
duced in [1, 9]. Specifically, assuming the discrete surface
[q0] is given by the reunion of the triangles {Ti}i=1,...,F and
[q1] as the reunion of triangles {T ′

j}j=1,...,F ′ , the discrete
approximation of the squared varifold distance writes:

dVar([q0], [q1])
2 =

F∑
i,j=1

k(xi, ni, xj , nj)aiaj

−2
F,F ′∑
i,j=1

k(xi, ni, x
′
j , n

′
j)aia

′
j+

F ′∑
i,j=1

k(x′
i, n

′
i, x

′
j , n

′
j)a

′
ia

′
j

where xi, ni, ai (resp. x′
i, n

′
i, a

′
i) denote the barycenter, unit

normal vector and area of triangle Ti (resp. T ′
i). Here k is

a positive definite kernel function on R3 × S2. While sev-
eral different families of kernels are possible (see discussion
in [9]), in all the experiments of this paper, we specifically

take k(x, n, x′, n′) = e−
|x−x′|2

σ2 (n · n′)2 where σ can be in-
terpreted as a spatial scale of sensitivity of the metric which
is chosen to be quite small (σ = 0.025) in our examples.
In this work, we adapted the Python implementation used
in H2 SurfaceMatch2 which itself relies on the PyKeops
library [5] for efficient evaluation and automatic differenti-
ation of kernel functions on the GPU.

2. Second Order Sobolev Metrics

In Section 3 we outline the desired properties of a metric
on the space of immersions that we pullback onto our latent
space. Here we give a more in depth formulation for the
family of split second order Sobolev metrics introduced in
[7] that we use in our model. We begin with a second order

2https://github.com/emmanuel-hartman/H2_
SurfaceMatch

1

https://github.com/ThibaultGROUEIX/ChamferDistancePytorch
https://github.com/ThibaultGROUEIX/ChamferDistancePytorch
https://github.com/emmanuel-hartman/H2_SurfaceMatch
https://github.com/emmanuel-hartman/H2_SurfaceMatch

metric given by∫
T
⟨h, h⟩+ g−1

q (dh, dh) + ⟨∆qh,∆qk⟩ volq (1)

where we view dh as a vector valued one-form, gq is the
pullback of the Euclidean metric on R3 and ∆q denotes the
vector Laplace operator induced by the parametrization q.
Fixing a coordinate view and treating dh and gq as 3 × 2
and 2 × 2 (resp.) matrix fields on T , one can then ex-
press volq as

√
|gq| and the first order term is computed as

g−1
q (dh, dh) = tr(dh · g−1

q). However, using the construc-
tion of [10], we may further decompose the vector valued
one-forms by dh = dhm + dh+ + dh⊥ + dh0. The ex-
act formulas for these terms can be found in [10]. Each of
these components are orthogonal with respect to the met-
ric g−1

q . The associated Riemannian energies of the first
three can be roughly interpreted from the point of view of
linear elasticity [2] as measuring the change of metric ten-
sor under constant volume form (shearing), the change in
volume density (stretching) and the change of normal vec-
tor direction (bending) respectively. The last term doesn’t
have such a clear interpretation but is necessary to recover
the standard first-order Sobolev norm. Thus we can even-
tually decompose Equation (1) and introduce nonnegative
weighting coefficients, producing the six parameter family
of metrics given by

Gq(h, k) =

∫
T

(
a0⟨h, k⟩+ a1g

−1
q (dhm, dkm)

+ b1g
−1
q (dh+, dk+) + c1g

−1
q (dh⊥, dk⊥)

+ d1g
−1
q (dh0, dk0) + a2⟨∆qh,∆qk⟩

)
volq .

(2)
The weighting of these terms have very natural geomet-
ric interpretations which can be adjusted to make the met-
ric more suited for different applications. The zeroth-order
term weighted by a0 penalizes how far the surface is moved
weighted by the volume form of the surface. The second-
order term weighted by a2 penalizes tangent vectors that in-
crease the local curvature of the surface. The interpretation
of the first order terms weighted by a1, b1, c1 and d1 was
discussed above. In the application to human motions, we
typically choose a1 and b1 to be the largest coefficients so
that our metric penalizes non-isometric motions. In com-
putations, the different terms in the metric are discretized
on triangular meshes based on the principles of discrete dif-
ferential geometry. A review of relevant methods from this
field can be found e.g. in [3] and the details of the specific
quantities we use are presented in [7].

3. Computational cost
As stated in the paper, our pipelines are optimization

based. We provide a substantial comparison for the differ-

Method Training Retrieval Interpolation
LIMP 1.5w <1s <1s
3D-Coded 12h 160s <1s 160s
ARAPReg 2w 160s <1s 160s
BaRe-ESA <1h 160s 91s 160s

Table 1: Computation costs for different methods. For the
interpolation, the results are as follow: we display on the
left the costs in the case latent codes are available, and the
cost in the case they’re not.

ent approaches.
All the other approaches require significant training costs

compared to BaRe-ESA which requires less than one hour,
cf Table 1. On the other hand, BaRe-ESA, ARAPReg and
3d-Coded require additional optimization for the latent code
retrieval, which we found takes approximately the same
time for all three methods. The optimization cost is driven
by the mesh invariant costs – varifold or Chamfer – which
have n2 complexity, where n is the number of vertices.
LIMP is the only method that doesn’t require optimization,
but the network behaves notably bad when the poses are
unseen as showed in the experiments. For the interpolation
problem our method requires approximately 90 seconds if
the latent codes are already available, whereas it takes ap-
proximately the same time as one latent code retrieval if
they are not available. All timing results were obtained us-
ing a standard home PC with a Intel 3.2 GHz CPU and a
GeForce GTX 2070 1620 MHz GPU.

4. Description of state-of-the-art methods
We propose a detailed description of the state-of-the-art

method we use as baselines. We selected deep learning
methods that builds a flat latent space for human shape de-
formations. They describe as follows:

• Learning Latent Shape Representations with Metric
Preservation (LIMP) is a deep learning method mod-
eling deformations of shapes using a variational auto
encoder with geodesic constraints. The encoder part
use a PointNet architecture, which makes it invariant
to parameterization. The decoder part is a Multi Layer
Perceptron. The geometric constraints are used a loss
functions during the training process. The latent space
is divided in an extrinsic part and an intrinsic part and
the loss is applied on the interpolation in those dimen-
sions. The intrinsic part is constrained using the com-
putation of full geodesic matrix, which make the train-
ing process particularly heavy.

• As-Rigid-As-Possible Regularization (LIMP) is a deep
learning method modeling deformations of shapes us-
ing an auto-decoder architecture. The latent codes and

the decoder are learned altogether. During the training,
an As-Rigid-As-Possible loss is imposed such that the
decoder directions are similar to the ARAP ones. This
procedure also makes the training procedure heavy. In
order to make it parameterization invariant, we replace
the L2 metric by the varifold distance, as an alternative
to our Riemannian latent space.

• 3D correspondences by deep deformation (3D Coded)
is a deep learning method modeling deformations of
shapes using a variational auto encoder. Similarly to
LIMP, the encoder part use a PointNet architecture,
which makes it invariant to parameterization. The de-
coder uses a Multi Layer Perceptron to deform a tem-
plate mesh, but no constraint is imposed on the inter-
polation of latent variables. By taking advantage of
a high number of training samples (> 200000), they
obtained state-of-the-art results for human shape cor-
respondence.

In the paper, all those methods are trained using the same
training set as Bare-ESA, from Dynamic FAUST and re-
ported parameters from the respective papers.

5. Comparison to the framework of [7]

In Figure 1 we compare BaRe-ESA to the unrestricted
method of [7]. Note, that BaRE-ESA is significantly
cheaper to compute as we reduced the dimension of the
minimization problem – the latent space dimension will be
in the order of 100s, while the dimension of the unrestricted
method is on the order of 10000s. More importantly, one
can observe that BaRe-ESA leads to significantly more nat-
ural deformations, cf. the movement of the arms in Fig. 1.

6. Algorithmic details

We provide below the pseudo-code of our algorithm for
latent code retrieval of a scan.

7. Comparison against the linear model

We provide in this section a comparison between the
full Bare-ESA model, and the simpler basis restricted linear
model (no Riemannian metric). To demonstrate the perti-
nence of our model, we perform the comparison on the in-
terpolation and extrapolation experiments. We display our
results in Table 2, where we observe a significant gap be-
tween linear model and BaRe-ESA respective errors. As
expected, the linear model generates non natural deforma-
tions, resulting in higher error compared to the real human
motions.

Figure 1: First line: optimal deformation calculated us-
ing the basis informed ESA of the present article. Second
line: optimal deformation calculated using a standard H2-
matching.

Algorithm 1: Latent code retrieval of a scan

Input: The target scans q0;
a0, a1, b1c1, d1, a2 the parameter of the Sobolev
elastic metric;
(λk, σk)

p
k=0 the balancing weight and the spatial

support of the varifold distance at each refinement
step
Output: fgeo: the geodesic connecting q as the

coefficients α and the representative [q0] in
the template space.

Initialize αij = 0 and the path as
q̄ +

∑m
i=1 α

j
ihi +

∑m+n
i=m+1 α

j
iki−m. ;

for k ← 0 to p do
Define the energy functional E(α) =∫ 1

0
Gα(∂tα, ∂tα)dt+ λkΓ(F (α)(1), q0) in an

automatic differentiation framework (PyTorch
here), that computes the gradient value∇αE
along the functional value;

Minimize E with respect to α with a gradient
descent algorithm (SciPy BFGS or L-BFGS-B),
outputing optimal αout coefficients based on
initialization α;

Set α = αout;
end
Set [q0] to be the endpoint of the final geodesic;
return α and [q0]

Linear Model Bare-ESA
Hausdorff Chamfer Varifold Hausdorff Chamfer Varifold

Interpolation 0.18 0.07 0.03 0.07 0.04 0.02
Extrapolation 0.39 0.44 0.05 0.16 0.10 0.02

Table 2: Mean errors of Linear Model and Bare-ESA for in-
terpolation and extrapolation experiments. The Hausdorff,
Chamfer and varifold distance are computed against ground
truth sequences.

8. Precise requirements of BaRe-ESA
In our experiments we used registered 4D data to con-

struct the body pose basis by performing PCA on the tan-
gent vectors of curves in the space of human body surfaces
that represent natural human motions. To construct the body
pose basis we compute geodesics between humans in a sim-
ilar pose and apply the same PCA approach to the tangent
vectors of the resulting curves in the space of human body
surfaces. We do not consider the use of 4D data for con-
structing a pose basis as a limitation of our method, but
rather an advantage, since it allows us to utilize information
from actual human motions to inform the construction of the
pose change basis. By contrast, most alternative methods do
not utilize the 4D data in this way. Moreover, we can use the
framework of [7] to construct geodesics as synthetic train-
ing data in applications where 4D data is not available. In
the same time, the assumption on the existence of humans
in a similar body pose could be dropped relatively easily,
as one could use the previously obtained body pose basis to
create such a training set if needed. This would significantly
change the training effort required by our approach.

References
[1] Nicolas Charon and Alain Trouvé. The varifold represen-

tation of nonoriented shapes for diffeomorphic registration.
SIAM journal on Imaging Sciences, 6(4):2547–2580, 2013.
1

[2] Nicolas Charon and Laurent Younes. Shape spaces: From
geometry to biological plausibility. Handbook of Mathemat-
ical Models and Algorithms in Computer Vision and Imag-
ing: Mathematical Imaging and Vision, pages 1929–1958,
2023. 2

[3] Keenan Crane. Discrete differential geometry: An applied
introduction. Notices of the AMS, Communication, pages
1153–1159, 2018. 2

[4] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017. 1

[5] Jean Feydy, Joan Glaunès, Benjamin Charlier, and Michael
Bronstein. Fast geometric learning with symbolic matri-
ces. Advances in Neural Information Processing Systems,
33, 2020. 1

[6] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. 3d-coded: 3d cor-
respondences by deep deformation. In Proceedings of the

European Conference on Computer Vision (ECCV), pages
230–246, 2018. 1

[7] Emmanuel Hartman, Yashil Sukurdeep, Eric Klassen, Nico-
las Charon, and Martin Bauer. Elastic shape analysis of sur-
faces with second-order sobolev metrics: a comprehensive
numerical framework. arXiv preprint arXiv:2204.04238,
2022. 1, 2, 3, 4

[8] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 1

[9] Irène Kaltenmark, Benjamin Charlier, and Nicolas Charon.
A general framework for curve and surface comparison and
registration with oriented varifolds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3346–3355, 2017. 1

[10] Zhe Su, Martin Bauer, Eric Klassen, and Kyle Gallivan. Sim-
plifying transformations for a family of elastic metrics on the
space of surfaces. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 848–849, 2020. 2

