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1. Learnable Balancing Weights
The final auxiliary loss is the weighted sum of our pro-

posed three auxiliary losses. Instead of using the same fixed
values of the auxiliary losses balancing weights, we pro-
pose to add the balancing weights to the learnable network
parameters and learn their values during training. This en-
ables the training algorithm to effectively balance the aux-
iliary tasks with optimal weights. At test-time, the learned
weights are fixed.

We first initialize three trainable parameters ci(i =
1, 2, 3) with initial values of ones. These parameters
are trained along with the auxiliary task parameters, i.e.
{θaux, ci}, by optimizing the final auxiliary loss Laux. To
ensure that the learned balancing weights are in the appro-
priate range, we adapt the loss function in [5] to avoid large
values of weights and biased losses. We further apply a
softmax function to make balancing weights sum to 1. The
learned parameters ci are mapped to λi as following:

λi = Softmax(
1

2c2i
), (1)

where i = (1,2,3). The final balanced auxiliary loss is de-
fined as following:

Laux({ci}3i=1, θaux) = λ1ℓrec + λ2ℓbyol + λ3ℓcc. (2)

2. Additional Results and Ablation Studies
2.1. Generalization to Unseen Datasets

We have conducted a cross-dataset generalization exper-
iment on 3DMatch [7] and KITTI [3] datasets to evaluate
the capability of our method in improving the generaliza-
tion performance of point cloud registration networks. Due
to the space limitation, we only report the registration re-
sults when training the model on 3DMatch [7] and evalu-
ating on KITTI [3] in the main paper. Here we report the
performance improvement of all the baselines when train-
ing on KITTI dataset [3] and testing on 3DMatch dataset
[7]. As presented in Table 1, our method achieves the best
performance across all the evaluation metrics with a good

Table 1: Results of cross-dataset generalization experiment.
We train the models on KITTI dataset [3] and evaluate on
3DMatch dataset [7].

Recall ↑ RE (deg) ↓ TE (cm) ↓
DGR [2] 87.39 2.71 7.58
Ours + DGR 90.25 2.32 7.26
DHVR [6] 87.16 2.74 7.43
Ours + DHVR 90.48 2.25 7.04
PointDSC [1] 89.42 2.15 6.89
Ours + PointDSC 91.36 1.87 6.33

Table 2: Ablation studies comparison between learnable
and fixed balancing weights. Second row presents results
with fixed balancing weights of (λ1 = 0.5, λ2 = 0.3,
λ3 = 0.2). Third row presents results with fixed balancing
weights of (λ1 = 0.7, λ2 = 0.1, λ3 = 0.2). Our framework
with learnable balancing weights achieve better results in
all evaluation metrics.

Recall ↑ RE (deg) ↓ TE (cm) ↓
DGR [2] 91.31 2.43 7.34
DGR + fixed 92.03 1.76 6.48
DGR + fixed 92.26 1.73 6.41
DGR + learnable 92.45 1.71 6.39

margin. This demonstrates the effectiveness of our method
in boosting the generalization capability of the three back-
bones: DGR [2], DHVR [6], and PointDSC [1] to unseen
datasets by enabling the networks to exploit the internal fea-
tures of point clouds at test time.

2.2. Analysis of methodology components

We perform ablation study on each methodology com-
ponent to further analyze our proposed method. We re-
port the registration results when evaluating on 3DMatch
dataset [7] in the main paper. Here we report results when
testing on KITTI dataset [3] to investigate the contribu-
tion of each framework component. As shown in Table 3,
the results of combining auxiliary learning with DGR [2]



Table 3: Ablation study on KITTI dataset. We report the
contribution of each framework component.

Recall ↑ RE (deg) ↓ TE (cm) ↓
DGR 95.24 0.44 23.25
DGR + Aux. 95.21 0.43 23.32
DGR + TTA (w/o meta) 96.63 0.39 22.30
DGR + Meta-Aux. (w/o TTA) 96.85 0.37 21.94
DGR + full framework 97.36 0.34 21.16

were slightly worse than baseline results. However, TTA
and meta-learning significantly improve registration perfor-
mance when combined with auxiliary learning. Finally, our
final framework achieves the best registration results, which
validate the contribution of each component.

2.3. Impact of Learnable Balancing Weights.

In this study, we report the impact of learning the balanc-
ing weights. We perform the experiments on the 3DMatch
dataset and adapt DGR [2] as the baseline of the experiment.
The results are shown in Table 2. In the second and third
rows of Table 2, we report the results of using fixed balanc-
ing weights. Although the registration recall improved by
0.72% and 0.95%, respectively, it is hard to determine the
optimal balancing weights without doing numerous exper-
iments. Instead, training with learnable balancing weights
effectively balances the auxiliary tasks and greatly improves
all evaluation metrics.

3. More Qualitative Results

We present more qualitative results on 3DMatch (Figure
1 and Figure 2), 3DLoMatch (Figure 3), and KITTI (Figure
4 and Figure 5).
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Figure 1: Qualitative results on 3DMatch dataset [7].
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Figure 2: Qualitative results on 3DMatch dataset [7].
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Figure 3: Qualitative results on low-overlapping 3DLoMatch dataset [4].
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Figure 4: Qualitative results on KITTI dataset [3].
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Figure 5: Qualitative results on KITTI dataset [3].


