
Appendix for “EgoTV : Egocentric Task Verification
from Natural Language Task Descriptions”

This appendix is organized as follows:
8. EgoTV dataset: Generation details, additional statistics.
9. CrossTask Verification (CTV) dataset: Details on gener-
ation process and evaluation.
10. NSG: Semantic parsing approaches, additional analysis
and ablations, performance on CTV.
11. Baselines: Details on VLM and Oracle baselines.

8. EgoTV Dataset

8.1. Task-video Generation using PDDL Planner

To generate EgoTV tasks, we encode the final state of
the objects achieved by an EgoTV task as the “goal state”
for the Planning Domain Definition Language (PDDL)
planner. Note that the ordering constraints of the tasks
aren’t captured when the tasks are encoded as goal states
for the PDDL planner in this manner. For instance, the
tasks of clean then heat(apple) and clean and heat(apple)
would have the same PDDL goal states. Consequently,
we enforce ordering constraints for a given task using
“pre-conditions” in PDDL. In the above example task
of clean then heat(apple), the clean sub-task would thus be
the pre-condition for the heat sub-task. Apart from the tasks
and object states, the agent state and environment dynam-
ics – e.g., the heat sub-task changes the state of the target
object to be hot – are also encoded in PDDL.

For each task, a random kitchen scene is picked and the
agent is spawned in the corresponding AI2-THOR scene.
The planner leverages the initial state and action definitions
to generate a sequence of sub-tasks required to achieve the
goal. Rather than simply selecting the best plan, which may
not always reflect human-like behavior, we aim to mimic
the less-than-optimal decision-making of humans by ran-
domly selecting a plan from the top-k plans. This approach
enables the inclusion of sub-tasks that may not be strictly
necessary for achieving the goal. Furthermore, the partial-
ordered nature of tasks enables different plan generations to
achieve the same task, thus promoting diversity. We use the
Fast Forward (FF) planner [23] to generate plans.

Apart from sequencing the sub-tasks appropriately for
achieving a given task, the planner also ensures that the
agent can navigate to the correct locations for each sub-task.
For instance, to execute the clean sub-task, an agent typi-
cally requires using the sink in the kitchen and hence must
navigate there. The generated plans thus consist of naviga-
tion and object interaction actions.

8.2. EgoTV Task-description Generation

The task descriptions corresponding to negative samples,
where the task videos are not entailed by their descriptions,
are created by either altering the sequence of sub-tasks in
the positive template or by replacing some of them with
alternative sub-tasks picked randomly from the remaining
repertoire of sub-tasks (see Figure 1 where heat is replaced
with cool). To ensure the practicality of an assistive agent
that aids a human, we maintain the target object in the nega-
tive samples but vary the sub-tasks, as negative task descrip-
tions on the sub-task level are more relevant than on the ob-
ject level. For abstraction, we (i) omit the low-level details
like clean in the sinkbasin, cool in the fridge; (ii) (some)
task-oriented descriptions are changed to goal-oriented de-
scriptions (apple is heated and cleaned 7→ hot, clean apple).

An example template of task descriptions correspond-
ing to the task cool then clean is [‘{obj} is cooled in a
Fridge, then cleaned in a SinkBasin’, ‘{obj} is cleaned in
a SinkBasin after cooling in a Fridge’, ‘{obj} is cooled in
a Fridge before cleaning in a SinkBasin’]. While EgoTV
already incorporates some diversity in task descriptions in
this manner, we note that inclusion of more diverse free-
form language descriptions in the dataset (possibly col-
lected through crowdsourcing) would be a valuable future
enhancement.

8.3. Dataset Analysis and Statistics

See Figure 6 for a comparison of video lengths and task
description lengths across different splits. It can be ob-
served that the Novel Tasks split has the longest videos
(≈ 1.6 minutes) and task descriptions (≈ 12 words) ow-
ing to its compositional tasks. Additionally, the Abstraction
split has the shortest task description (≈ 5 words), even for
longer videos due to abstraction. We include all tasks of
EgoTV in Table 8 at the end of the supplement. We also
perform a detailed analysis of each split (Figure 11).

9. CrossTask Verification (CTV) Dataset

9.1. Dataset construction

We leverage the CrossTask dataset and its action step an-
notations to construct our CrossTask Verification dataset.
Each video contains task descriptions that are obtained
by concatenating the sequence of action steps annotations
available in the original CrossTask dataset. For ease of



——– Reasoning ——– ———– Dataset Characteristics ———– — Grounding —
compos-
itional causal language egocentric

real-
world

diagnostic
tools

objects,
relations actions

CLEVRER [74] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗
Next-QA [69] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓
AGQA [18] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
Activity
Net-QA [21] ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

STAR [68] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
CoPhy [5] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗
Social-IQ [78] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗
Causal-
VidQA [33] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Charades [58] ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓
CATER [16] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓
EPIC-
KITCHENS [10] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ego-4D [17] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
VIOLIN [38] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Change-It [60] ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓
Cross-Task [82] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

EgoTV ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Table 5. EgoTV vs. existing video-language datasets. EgoTV benchmark enables reasoning (compositional, causal, and temporal); has
unique dataset characteristics along with diagnostics; requires grounding of objects, relations, and actions.

Figure 6. Additional EgoTV dataset statistics. Comparison of
video length (in minutes) and task description length (number of
words) across different splits using error plots. Novel Tasks split
has the longest videos and task descriptions. Abstraction split has
the shortest task descriptions.

Figure 7. Task graphs are used to create impossible sequences
for generating negative task descriptions in the CTV dataset.

experimentation, we only consider the top-4 frequent ac-
tion steps for each task in CrossTask. Consequently, CTV
dataset videos are constructed by selecting the segments
corresponding to these frequent actions per video and are
thus shorter than the original CrossTask videos.

We follow a process similar to EgoTV for generating
negative descriptions: (i) replacing action steps from other
tasks: where we substitute an action step in the sequence

with an action step in another task. (ii) replacing action
steps from the same task: instead of replacing steps from an-
other task, we reuse the unused action steps, which were not
the top-4 frequent steps in the same task. These action steps
are closer in semantics and serve as hard negative. (iii) re-
placing action step sequence order to an impossible order:
we first list out all possible action step orders in CrossTask
following [42] as shown in Figure 7. Then, we construct an
action step sequence that doesn’t exist in CrossTask for the
given task, e.g., lower jack, upper jack, break on for the task
of fixing the car. We assume that these sequence orders are
impossible since they were not observed in any videos for a
given task.

Apart from generating negative NL task descriptions, we
also generate negative videos in two ways: (i) shuffling the
video order corresponding to action step sequence: this
mimics the case where the action steps were not executed
in the correct order. (ii) dropping a video segment corre-
sponding to an action step: this corresponds to the situa-
tions where an action step is missed while executing the
task, potentially resulting in a failure in accomplishing the
task. Thus, this is an important use case for task verifica-
tion.

10. NSG details
10.1. NSG Training details

When training NSG, we do not update the weights of
the CLIP feature extractors (Sec. 5.3) due to GPU memory
limitations. We use a batch of N = 64 samples, where we
sample the video at 2.5 FPS. We set a window size k = 20
frames for segmentation in NSG (Sec. 5.4), each window



representing an 8-second video segment. We use a train-
validation split of 80-20 and use the validation performance
as an indicator of convergence. We minimize the binary
cross-entropy loss in Eq. 2 with Adam [28] and a learning
rate of 1e-3. Each model is trained on 8 V100 GPUs for 50
epochs for two days.

10.2. NSG Semantic Parsing

We test two semantic parsing methods: (i) Finetuning
language models to generate graphs from NL descriptions;
(ii) Few-shot prompting of large language models.

10.2.1 Finetuning Language Models

Recently, it has been shown that pre-trained language
models can be leveraged for graph [53] and plan genera-
tion [72] from NL. We use a similar framework to train
a T5-small transformer [51] to generate partial-ordered
plans. For this, we use a subset of the training data (in
particular the positive task descriptions for which we
have gold-label graphs annotations) and annotate them
with their partial-ordered plans in the form of directed
acyclic graphs (DAG) – G(V,E), where vertices ni ∈ V
represent sub-tasks, and edges eij ∈ E are ordering
constraints that indicate ni must precede nj (i.e. ni → nj).
To train the text generation transformer, we represent
the output graph in DOT language. The correspond-
ing DOT representation for the graph in Figure 4 is
given as: Step 0: StateQuery(apple,hot),
Step 1: StateQuery(apple,clean),
Step 2: StateQuery(apple,sliced),
Step 3: RelationQuery(apple,plate,in),
Step 0 → Step 1, Step 0 → Step 2,
Step 1 → Step 3, Step 2 → Step 3

Ablations on Plan Generation framework: We assess
the correctness of the graphs generated by the trained T5-
transformer model on the positive task descriptions of our
test splits. The evaluation metric is Graph Edit Distance
(GED) [1] which computes the distance between two graphs
(G1 and G2) given as:

GED(G1, G2) = min
G1

d1,...,dk−−−−−→G2

k∑
i=1

cost(di)

where, d1, . . . dk are graph edit operations (insertion, dele-
tion, replacement of a vertex or an edge) from G1 to G2.
With the exception of the abstraction split6, the GED for

6For abstraction, we observed syntax errors, e.g., miss-
ing/incorrect arguments for queries in the generated graphs
like RelationQuery(apple, slice), instead of
RelationQuery(apple, knife, slice). However, the se-
lection of the correct query module and the partial grounding of the correct
arguments lead to a significant improvement over baselines.

all test splits was observed to be ≈ 0.03 (GED ↓). Here,
↓ signifies that a lower GED score is better, with the low-
est value being = 0. Note, that although it is possible for
the response to contain syntax errors, e.g., invalid names or
queries with invalid arguments, the output can be improved
by leveraging the DSL grammar to avoid invalid arguments.

10.2.2 Prompting Language Models

We also experimented with prompting. As a proof-of-
concept, we show our example prompts in Table 10.4. We
use ChatGPT [46] with few-shot prompting. The prompt
is displayed in gray, the queries in blue, and the generated
output in green. We observed that the use of Chain-of-
Thought [66] improved the output.

10.3. Integer Programming for Alignment in NSG

The constrained optimization problem defined in Eqs. 3,
without the ordering constraint, can also be formulated as an
Integer Programming problem [67] where variables Zjt can
only take integer values in {0, 1} (i.e. with the additional
constraint Z ∈ {0, 1}N×S). Notably, the proposed DP solu-
tion adheres to the constraints Eqs. 3a 3b 3c. The first part
of the DP (highlighted in green in Figure 4) pairs the cur-
rent query qj with the current segment st, then tries to align
the rest of the queries with the remaining segments to meet
the requirement of one query per segment, as specified in
Eq. 3a. The second part of the solution (denoted by the red
box) skips over the current segment st and tries to align the
same queries with the remaining segments until a pairing is
found (i.e. Zjt = 1). Thus, together with the base case of
Z = I if N = S, it satisfies Eq. 3b. Furthermore, since the
DP processes the queries and segments in a specific order
(topological sorting for queries and temporal order of video
segments), it also meets the ordering constraint requirement
specified in Eq. 3c.

10.4. NSG Analysis

• Table 6 demonstrates the robustness of NSG to changes
in the window size k.

• We trained two different NSG models to
compare the impact of query types with (i)
(State+Relation)Query, (ii) ActionQuery.
Figure 9 reveals that a combination of
(State+Relation)Query is effective at detecting
sub-tasks in segments with high recall, particularly for
slice and put. We also note that the NSG model struggles
to detect the slice sub-task in the Novel Steps split.



Table 10.4: Semantic Parsing by Prompting ChatGPT

Q. slice of apple is heated in microwave, then placed in a plate
A. First the apple is sliced, hence Step 1: slice apple. Then the apple is heated,
hence Step 2: heat apple. Then the apple is placed in a plate, hence Step 3: place
apple in plate. Hence, the order of the steps are: slice apple < heat apple < place
apple in plate

Q. potato is cleaned in sinkbasin and sliced, then cooled in a fridge
A. First the potato is cleaned and sliced in any order, hence Step 1: clean potato;
Step 2: slice potato. Then the potato is cooled in a Fridge, hence Step 3: cool
potato. Hence, the order of the steps are: clean potato and slice potato < cool
potato

Q. hot, sliced, clean tomato
A. First the tomato is heated and sliced and cleaned in any order, hence Step 1: heat
tomato; Step 2: slice tomato; Step 3: clean tomato. Hence, the order of the steps
are: heat tomato and slice tomato and clean tomato

Q. apple is heated and cleaned in sinkbasin, then cooled and sliced
A. First the apple is heated and cleaned in a sink basin in any order, hence Step 1:
heat apple; Step 2: clean apple. Then the apple is cooled and sliced in any order,
hence Step 3: cool apple; Step 4: slice apple. Hence, the order of the steps are:
heat apple and clean apple < cool apple and slice apple.

Q. sliced apple is heated in microwave, then cleaned in a sinkbasin
A. First the apple is sliced, hence Step 1: slice apple. Then the apple is heated
in a microwave, hence Step 2: heat apple. Then the apple is cleaned in a sink basin,
hence Step 3: clean apple. Hence, the order of the steps are: slice apple < heat
apple < clean apple

Q. apple is heated in microwave after cooling and cleaning
First the apple is cooled and cleaned in any order, hence Step 1: cool apple; Step
2: clean apple. Then the apple is heated in a microwave, hence Step 3: heat apple.
Hence, the order of the steps are: cool apple and clean apple < heat apple.

• We evaluated the NSG model against the best-performing
baseline (VIOLIN-ResNet) across two axes: task com-
plexity and ordering. Figure 8 shows that NSG’s perfor-
mance is robust to complexity and ordering variations.

• Since NSG only utilizes the features from aligned video
segments and ignores the remaining segments, we con-
ducted experiments to investigate the role of context
(from the discarded segments) in EgoTV. Specifically,
we trained an extra BiLSTM layer to encode bidirectional
context from adjacent segments on top of the CLIP seg-
ment features. From Table 6, we observed improved per-
formance across all splits, except for Novel Tasks. We
attribute this to a potential loss of compositional and tem-
poral comprehension of the segment features caused by
the inclusion of additional context information.

10.5. NSG on Real-world Data

NSG for CTV. In Section 5.1, we described two symbolic
operations to process task description. In CTV, all of the

NSG
Novel Novel Novel

Abstraction
Tasks Steps Scenes

k = 12 90.6 50.3 81.3 82.5
k = 20 (default) 90.0 64.7 84.9 80.4
k = 32 89.2 54.9 81.0 82.3
NSG-BiLSTM 73.3 70.2 90.0 87.2

Table 6. NSG ablations. [Block 1]: NSG with different window
sizes k = {12, 20, 32}. The best-performing NSG model with
k = 20 is reported in Table 3. [Block 2]: NSG with BiLSTM to
encode additional context from neighboring segments.

action steps refer to a certain action. Hence, we apply the
ActionQuery as in Table 2 to encode all action steps. In
Section 5.2, we described (1) how we processed task de-
scription into a graph and (2) how we generated all possible
sequences from the graph. Since the action sequences are
already given in CTV, we can skip the above two steps in
Section 5.2 and directly feed the sequence in our Query En-
coder and Video Aligner models.



Figure 8. NSG maintains consistent performance as task com-
plexity and ordering difficulty increases. F1-score of NSG vs.
best-performing baseline for EgoTV tasks with varying complex-
ity and ordering are shown.

Model Visual Text Fusion F1
VIOLIN-I3D [38] I3D BERT Y 34.7
MIL-NCE [44] S3D Word2Vec 43.4
VideoCLIP [36] Tx Tx Y 49.7
CoCa [76] Tx Tx Y 70.9
NSG (ours) CLIP CLIP Y 76.3

Table 7. Performance on CTV’s test split, which mirrors the
Novel Tasks split from EgoTV

Performance Evaluation. To evaluate how NSG enables
task verification in the real world, we compare the per-
formance of NSG against selected baselines described in
Sec. 6, which were either applied to the previous CrossTask
evaluation (MIL-NCE[44], VideoCLIP[36]) or had com-
petitive performance (CoCa[76], VIOLIN[38]) on EgoTV.
Note that the methods for CrossTask are not directly appli-
cable to CTV since CTV focuses on task verification (pre-
dicting if the task is accomplished) instead of temporal lo-
calization (localizing action temporally). Table 7 shows that
the baseline models VideoCLIP, CoCa perform better than
VIOLIN on CTV as compared to EgoTV. This indicates
that CTV is potentially able to better harness the gains from
the large-scale VL pretraining in these models compared
to EgoTV. Despite these gains, NSG outperforms the base-
lines by a significant margin.

11. Baseline descriptions and details
11.1. VLM Baselines

Majority of VLMs can be characterized based on their
approach of extracting and fusing features from vision and
text modalities. VLMs for video tasks use either a video en-
coder or an image encoder with temporal aggregation using
sequence model, e.g., transformers [51] or LSTM [22] to
obtain the video features. The vision and text encoders can
be jointly trained using either a) contrastive loss that aligns
both modalities in a shared latent space e.g., CLIP [50],
MIL-NCE [44], b) masked token prediction losses on the

generated text [32] aka captioning loss, or c) combination
of captioning and contrastive losses [76]. The vision-text
features from encoders can either be fused (multimodal fu-
sion) using attention-based mechanisms or by computing
cross-modal similarity scores. We investigate 6 VLMs that
span the space of these characteristics for EgoTV.
CLIP4Clip [39] uses CLIP-based [50] text and image
encoders. Parameterized (e.g., LSTM-based) or non-
parameterized (e.g., mean-pooling) aggregation of the re-
sultant image features allows video representation us-
ing a single feature vector, without any explicit fusion.
CLIP Hitchhiker [3] uses a similar encoder structure
as CLIP4Clip [39] and performs weighted-mean pooling
of frame embeddings using text-visual similarity scores.
CoCa [76] uses image-text (dual) encoder-decoder archi-
tecture trained using contrastive and captioning loss. The
frame-level features are pooled via attentional pooling [30]
to model the temporal sequence of the video and then fused
with the text features for downstream tasks. MIL-NCE [44]
learns to encode video and text into a single vector using
separate encoders (S3D[71], word2vec[45]) learned from
scratch using the proposed multi-instance contrastive loss.
VideoCLIP [36] is built on top of MIL-NCE [44]. It
adds additional transformer layers for video and text en-
coders, trained using contrastive loss. The resultant embed-
dings can be fused together for downstream tasks. VIO-
LIN [38] uses pre-trained image/video (e.g., ResNet [19],
I3D [7]) and text encoders (e.g., GloVe [48], BERT [12])
separately and fuses the resultant representations from each
modality using bi-directional attention [55]. For each of the
above VLMs, we freeze the pretrained feature extractors
and finetune a fully-connected probe layer, along with the
temporal aggregation layers where appropriate (CLIP4Clip-
LSTM, VIOLIN), using EgoTV’s train split.

11.2. Text2Text Baseline Model

In this baseline, we generate video captions from
ground-truth objects and sub-task labels and calculate a text
similarity score (cosine similarity) between the video cap-
tion and the task description using a pretrained RoBERTa
model [81] by using a manually set threshold. Videos
are split into segments, with each caption containing the
segment index (for temporal grounding), scene location
(kitchen), (top-k) objects in the scene, and the activity (sub-
task). Refer to Table 10 for examples. This baseline mir-
rors Socratic Models [79] which generalizes in zero-shot
by leveraging the multimodal capabilities from several pre-
trained models. For instance, the objects from each segment
can be captured using open-vocabulary VLMs [35, 80, 76],
while the activities for each segment can be detected using
[44, 36] by zero-shot classification with text-to-video fea-
ture similarity. Similarly, a final summarized video caption
for the whole video can be generated using an LLM. No-



SQ
ue

ry
(o

bj
, h

ot
)

SQ
ue

ry
(o

bj
, c

ol
d)

SQ
ue

ry
(o

bj
, c

le
an

)
RQ

ue
ry

(o
bj

,k
ni

fe
,sl

ice
)

RQ
ue

ry
(o

bj
,re

ce
p,

in
)

No
ne

heat
cool

clean
slice
put

other

104 0 0 0 3 0

0 86 0 0 9 0

1 0 171 0 8 0

0 1 1 98 16 0

0 0 1 1 150 0

5 13 9 83 76 0

Validation

SQ
ue

ry
(o

bj
, h

ot
)

SQ
ue

ry
(o

bj
, c

ol
d)

SQ
ue

ry
(o

bj
, c

le
an

)
RQ

ue
ry

(o
bj

,k
ni

fe
,sl

ice
)

RQ
ue

ry
(o

bj
,re

ce
p,

in
)

No
ne

97 0 0 2 2 0

0 426 0 1 1 0

0 0 433 1 1 0

1 3 0 211 20 0

0 0 0 5 141 0

2 12 8 141 56 0

Novel Tasks

SQ
ue

ry
(o

bj
, h

ot
)

SQ
ue

ry
(o

bj
, c

ol
d)

SQ
ue

ry
(o

bj
, c

le
an

)
RQ

ue
ry

(o
bj

,k
ni

fe
,sl

ice
)

RQ
ue

ry
(o

bj
,re

ce
p,

in
)

No
ne

106 0 0 0 3 0

0 86 0 0 8 0

0 0 170 90 8 0

0 1 1 90 17 0

0 0 1 1 149 0

5 13 9 89 77 0

Novels Steps

SQ
ue

ry
(o

bj
, h

ot
)

SQ
ue

ry
(o

bj
, c

ol
d)

SQ
ue

ry
(o

bj
, c

le
an

)
RQ

ue
ry

(o
bj

,k
ni

fe
,sl

ice
)

RQ
ue

ry
(o

bj
,re

ce
p,

in
)

No
ne

522 0 45 0 10 0

0 206 0 1 1 0

9 0 553 3 4 0

3 0 13 404 44 0

1 0 0 6 297 0

9 13 33 268 143 20

Novel Scenes

SQ
ue

ry
(o

bj
, h

ot
)

SQ
ue

ry
(o

bj
, c

ol
d)

SQ
ue

ry
(o

bj
, c

le
an

)
RQ

ue
ry

(o
bj

,k
ni

fe
,sl

ice
)

RQ
ue

ry
(o

bj
,re

ce
p,

in
)

No
ne

188 0 1 1 0 0

0 69 0 0 2 0

1 0 208 1 1 0

0 0 1 145 6 0

5 0 1 6 106 0

9 1 7 111 66 0

Abstraction

AQ
ue

ry
(h

ea
t, 

ob
j)

AQ
ue

ry
(c

oo
l, 

ob
j)

AQ
ue

ry
(c

le
an

, o
bj

)
AQ

ue
ry

(s
lic

e,
ob

j, 
kn

ife
)

AQ
ue

ry
(p

la
ce

,
ob

j, 
re

ce
p,

 in
)

No
ne

heat
cool

clean
slice
put

other

259 0 0 5 1 0

0 102 0 0 25 0

0 0 225 83 0 0

4 0 3 128 11 0

0 0 1 20 27 0

10 3 10 235 92 12

AQ
ue

ry
(h

ea
t, 

ob
j)

AQ
ue

ry
(c

oo
l, 

ob
j)

AQ
ue

ry
(c

le
an

, o
bj

)
AQ

ue
ry

(s
lic

e,
ob

j, 
kn

ife
)

AQ
ue

ry
(p

la
ce

,
ob

j, 
re

ce
p,

 in
)

No
ne

95 0 0 5 9 0

0 428 0 2 12 0

0 0 380 58 7 0

3 0 5 158 13 0

0 1 1 9 14 0

2 12 10 206 135 0

AQ
ue

ry
(h

ea
t, 

ob
j)

AQ
ue

ry
(c

oo
l, 

ob
j)

AQ
ue

ry
(c

le
an

, o
bj

)
AQ

ue
ry

(s
lic

e,
ob

j, 
kn

ife
)

AQ
ue

ry
(p

la
ce

,
ob

j, 
re

ce
p,

 in
)

No
ne

104 0 0 2 2 0

0 85 0 0 13 0

0 0 168 19 9 0

0 3 3 90 8 0

0 0 0 4 16 0

7 12 10 67 180 0

AQ
ue

ry
(h

ea
t, 

ob
j)

AQ
ue

ry
(c

oo
l, 

ob
j)

AQ
ue

ry
(c

le
an

, o
bj

)
AQ

ue
ry

(s
lic

e,
ob

j, 
kn

ife
)

AQ
ue

ry
(p

la
ce

,
ob

j, 
re

ce
p,

 in
)

No
ne

477 0 23 34 1 0

0 203 0 0 39 0

10 0 389 169 14 0

32 2 31 121 23 0

0 0 3 42 44 0

25 14 34 654 211 17

AQ
ue

ry
(h

ea
t, 

ob
j)

AQ
ue

ry
(c

oo
l, 

ob
j)

AQ
ue

ry
(c

le
an

, o
bj

)
AQ

ue
ry

(s
lic

e,
ob

j, 
kn

ife
)

AQ
ue

ry
(p

la
ce

,
ob

j, 
re

ce
p,

 in
)

No
ne

186 0 0 3 4 0

0 78 0 3 18 0

0 0 155 40 2 0

0 0 2 101 10 0

0 0 0 7 4 0

14 2 2 168 60 0

Figure 9. Effect of query types on NSG performance. Confusion matrices for two different query models across train/test splits of EgoTV.
The Y-axis represents the ground-truth sub-task for a segment, and the X-axis denotes the aligned query for that segment. [Row 1]: Here,
SQuery and RQuery denote StateQuery & RelationQuery, respectively. [Row 2]: Here, AQuery denotes ActionQuery. It can
be observed that {State+Relation}Query performs better than ActionQuery.

table, despite having ground-truth textual representations
of objects and sub-tasks on a scene-by-scene basis, the
Text2text baseline model fails to generalize. We attribute
this to two reasons: (1) The pretrained RoBERTa model has
limited capacity to capture (out-of-domain) word-level sub-
task orderings to determine entailment in EgoTV, and (2)
Text2Text lacks visual inputs and might suffer from lack of
inferring relationships between objects.



Text2Text Baseline Examples

Text Description: apple is cooled in a Fridge and cleaned in a SinkBasin
Video Caption:
Segment: 1. Location: kitchen. Objects: countertop, apple. Activity: go to
countertop
Segment: 2. Location: kitchen. Objects: fridge, apple. Activity: go to fridge
Segment: 3. Location: kitchen. Objects: apple, fridge. Activity: cool apple
Segment: 4. Location: kitchen. Objects: apple, fridge. Activity: cool apple
Segment: 5. Location: kitchen. Objects: sink, apple. Activity: go to sink
Segment: 6. Location: kitchen. Objects: apple, sink. Activity: clean apple
Task Verified: True

Text Description: lettuce is picked, cooled in a Fridge, and sliced in a SinkBasin
Video Caption:
Segment: 1. Location: kitchen. Objects: sink, lettuce. Activity: go to sink
Segment: 2. Location: kitchen. Objects: sink, lettuce. Activity: go to sink
Segment: 3. Location: kitchen. Objects: lettuce, sink. Activity: clean lettuce
Segment: 4. Location: kitchen. Objects: fridge, lettuce. Activity: go to fridge
Segment: 5. Location: kitchen. Objects: lettuce, fridge. Activity: cool lettuce
Task Verified: False

Figure 10. Text2Text Baseline Examples.

Complex\Order 0 1 2

1 clean simple, cool simple, heat simple
pick simple, place simple, slice simple

2

clean and cool, clean and heat
clean and place, clean and slice
cool and place, heat and place
slice and cool, slice and heat
slice and place

clean then cool, clean then heat
clean then place, clean then slice
cool then clean, cool then place
cool then slice, heat then clean
heat then place, heat then slice
slice then clean, slice then cool
slice then heat, slice then place

3

slice and clean and place, cool and clean and place
cool and slice and place, heat and clean and place
slice and heat and place, slice and heat and clean
cool and slice and clean

clean then cool then place, clean then cool then slice
clean then heat then place, clean then heat then slice
clean then slice then cool, clean then slice then heat
cool then clean then place, cool then clean then slice
cool then slice then clean, heat then clean then place
heat then clean then slice, heat then slice then clean
slice then clean then cool, slice then clean then heat
slice then clean then place, slice then cool then clean
slice then cool then place, slice then heat then clean
slice then heat then place, clean and cool then place
clean and cool then slice, clean and heat then place
clean and heat then slice, clean and slice then cool
clean and slice then heat, clean then cool and slice
clean then heat and slice, cool and slice then clean
cool then clean and slice, heat and slice then clean
heat then clean and slice, slice and clean then place
slice and cool then place, slice and heat then place
slice then clean and cool, slice then clean and heat
clean then cool and place, clean then heat and place
clean then slice and place, slice then cool and place
slice then heat and place, slice then clean and place
heat then clean and place, heat then slice and place
cool then clean and place, cool then slice and place

Table 8. List of tasks in EgoTV dataset arranged according to complexity (rows) and ordering (columns) in the tasks. A total of 82 tasks
were considered for the dataset generation, split into train and novel composition sets. Blue denotes novel composition tasks.



Distribution of target objects per split

Distribution of tasks per split 

Distribution of scenes per split

Figure 11. EgoTV dataset analysis. Distribution of target objects [row 1, left], kitchen-scenes [row 1, right], and sub-tasks [row 2] in each
split. The Y-axis is in the log scale.


