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This supplementary material complements our main pa-
per with the following additional descriptions and results:

1) BiADT architecture.
2) Sensitivity to loss weights.
3) Ablation of DyHinge loss.
4) Ablation of Mutual information loss.
5) Additional visualizations of our results.

1. BiADT Architecture
Fig. 1 illustrates our BiADT which consists of 6 encoder

layers and 6 decoder layers. The input image is passed to
the backbone to extract CNN features. Then, in the trans-
former, the image features along with their positional and
domain embeddings are encoded by the 6 stacked encoder
layers. The encoder aligns the image domain-invariant fea-
tures LY

−, and makes the image domain-specific features
distinct LY

+ , while simultaneously minimizing the mutual
information LY

MI between these two kinds of features. In
the decoder, object queries decode the object representa-
tions from the encoded image token sequence, and apply
the same alignment strategy, i.e. minimize the domain align-
ment losses LX

− ,LX
+ ,LX

MI on object tokens. Finally, a detec-
tion loss LX

det is applied on the object tokens. We use two
“domain-heads” to calculate the losses of L+ and L−, re-
spectively. The domain heads FI and FD are detailed in
Fig. 2. Both are used for proper feature projection and out-
put a probability value between [0, 1].

2. Loss weights sensitivity analysis
Table 4 in the main paper shows the performance con-

tribution of different modules. Eq. (15) in the main paper
uses empirically optimized values for the weights λ of each
loss function. Tab. 1 shows our sensitivity analysis of these
weights in Eq. (15). We evaluate different value combina-

tions for λY
−, λ

Y
+ and λX

− , λX
+ in terms of mAP. As expected,

the weights affect the final accuracy (mAP). From Table 4
in the main paper, we observe the image token alignment
improves the mAP score more significantly. Accordingly,
Tab. 1 shows that varying the values of λY

−, λ
Y
+ also cause

larger variations in performance than the other weights. The
best values for the λs are presented in the 6th row of Tab. 1,
where both the values of (λY

+ and λX
+ ) are 10 times smaller

than λY
− and λX

− . The “+” alignment makes the domain-
specific features more distinct (absorb domain specific fea-
tures), and the “−” alignment uses the GRL to enforce the
features to become more domain-invariant.

Row λY
− λY

+ mAP
1 0.5 0.5 35.9
2 0.5 0.1 38.1
3 0.5 0.01 38.8
4 0.1 0.5 40.7
5 0.1 0.1 42.0
6 0.1 0.01 44.4
7 0.01 0.5 40.5
8 0.01 0.1 39.7
9 0.01 0.01 38.3

(a) Image-token alignment

Row λX
− λX

+ mAP
1 0.5 0.5 38.3
2 0.5 0.1 37.8
3 0.5 0.01 40.6
4 0.1 0.5 38.4
5 0.1 0.1 41.3
6 0.1 0.01 42.9
7 0.01 0.5 39.6
8 0.01 0.1 41.4
9 0.01 0.01 40.1

(b) Object-token alignment

Table 1: Loss weights sensitivity analysis

3. Ablation of DyHinge loss
Tab. 2 presents a detailed analysis of the performance

contribution of DyHinge loss in comparison to BCE (bianry
cross-entropy) loss and Hinge loss. As shown in Tab. 2,
BCE and Hinge loss with default margin 1.0 have simi-
lar performance contributions. However, when we reduce
the hinge loss margin to 0.5, the mAP drops from 48.4 to
47.9. This suggests that adjusting an overall margin value

1



Encoder Decoder

Source domain image

Target domain image

Resnet50

Backbone encoder layer 1
DABA

decoder layer 1

DABA

SABA

Object queries

Predicted 
objects

encoder layer 6
DABA

decoder layer 6

DABA

SABA

Figure 1: The architecture of our BiADT follows Dab-Deformable-Detr [2], which consists of 6 encoder layers and 6 decoder
layers. DABA and SABA represent the “Deformable Attention Bi-Alignment” and “Self Attention Bi-Alignment” illustrated
in the main paper.
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Figure 2: Architecture of domain heads FI and FD.

may not be a good choice. In contrast, when using the pro-
posed dynamic hinge loss (DyHinge), the mAP increases
to 48.7. Therefore, in Figure 2 in our main paper, we say
that DyHinge uses the derived “domain shift” from the bot-
tom branch to dynamically determine a suitable level for
the alignment of the domain-invariant features in the top
branch. The dynamic hinge loss is applied on different to-
kens adaptively, and thus mitigates the negative transfers on
domain-invariant features with weaker domain characteris-
tics.

4. Sensitivity analysis of MI loss

Fig. 3 shows the calculation of the joint and marginal
probabilities used in the MI (mutual information) loss
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Figure 3: Left: Joint and marginal probabilities used in MI
(mutual information) [4] loss in Eq.16 in our paper. Two
networks Tθ share weights. Right: Detailed architecture of
Network Tθ. d is set to 128 in the implementation.

Row loss term margin mAP
1 BCE - 48.2
2 Hinge 1 48.4
3 Hinge 0.5 47.9
4 DyHinge dynamic 48.7

Table 2: Evaluation of different losses on the alignment of
the domain-invariant features.

λMI 0 5e-6 1e-5 5e-5 1e-4
mAP 48.7 47.3 48.8 49.4 46.7

Table 3: Evaluation of different values of the weight λMI.

adopted from [4]. The left of Fig. 3 is the detailed archi-
tecture of Network Tθ(). In contrast to [4], our domain-
invariant features have doubled the channel size to that of
the domain-specific features. As shown in the right of
Fig. 3, we apply two different linear projections to resize
them to the same channel dimension.

The sensitivity analysis to the value of λMI is provided in
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Figure 4: Visualization of the predicted domain masks in the source and target domains by BiADT. The predicted domain
masks are corresponding to the domain-specific region, i.e., the fog region.

Tab. 3. From this table, there is an empirically optimal λMI.

5. Qualitative results visualization
Fig. 4 shows additional examples of our results beyond

those presented in Figure 5 in the main paper. The first
column and the third column show the source domain and
the target domain images, the second column and the fourth
column show the predicted domain masks by BiADT. As
we can see, the predicted domain masks identify reasonably
well the domain-specific image regions, i.e., the fog region.

Fig. 5 illustrates the detections made by the following ap-
proaches: SFA [3], AQT with DAB-Deformable-Detr back-
bone [1], and our BiADT. The ground truth bounding boxes
are shown in the rightmost column. As we can see, in gen-
eral, our BiADT misses fewer objects and hence gives a
higher true-positive detection rate than the other baseline
models.

Fig. 6 shows some corner cases of our BiADT. In the top
row, BiADT misses to predict the white trucks, probably
because the whiteness of the trucks appears very similar to
the fog – i.e., the automatically identified domain charac-
teristic. This is consistent to our results presented in Table
1 in the main paper, where our BiADT has slightly lower
accuracy on the category of “truck”. In the middle and bot-
tom rows, BiADT fails to predict the train and the bus. One
reason might be that the categories of these objects contain
significantly fewer instances in the training dataset than the
other object categories.
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Figure 5: Detection results visualization comparison for (1) SFA [3], (2) AQT with DAB-Deformable-Detr backbone [1], (3)
our BiADT and (4) ground truth.
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Figure 6: Qualitative visualized results for failure cases of BiADT.
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