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A. Methodology

A.1. Derivations of the HIFM solution

We first introduce two auxiliary variables El and Hk,
and rewrite HIFM as follows:

min
Y,El,Hk

1

2
∥Y −M∥22 +

L∑
l=1

λlψ (El) +

K∑
k=1

µkϕ (Hk) ,

s.t. El = ∇lY,Hk = ∇k(Y −M).

(1)

We then solve Eq. (1) with the alternative direction
method of multipliers (ADMM) [17] to eliminate the corre-
sponding constraints and acquire the final solutions. Eq. (1)
can be converted into its augmented Lagrangian form by
introducing two dual variables Fl and Gk:

L(Y,El,Hk,Fl,Gk)=
1

2
∥Y −M∥22+

L∑
l=1

λlψ (El)+

K∑
k=1

µkϕ (Hk)

+

L∑
l=1

ρl
2
∥∇lY−El+Fl∥22 +

K∑
k=1

τk
2

∥∇k (Y −M)−Hk+Gk∥22 ,

(2)

where ρl and τk are penalty weights. Through the vari-
able splitting strategy, the solution of the proposed HIFM is
equivalent to solving the following decoupled sub-problems
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{Y,El,Hk} with the Lagrangian multipliers omitted:

Y(n)=argmin
Y

1
2∥Y−M∥22+
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ρl

2

∥∥∥∇lY−E
(n−1)
l +F

(n−1)
l

∥∥∥2
2

+
∑K

k=1
τk
2

∥∥∥∇k (Y−M)−H
(n−1)
k +G

(n−1)
k

∥∥∥2
2
,

E
(n)
l =argmin

El

λlψ (El)+
ρl

2

∥∥∥∇l Y
(n)−El+F

(n−1)
l

∥∥∥2
2
,

H
(n)
k =argmin

Hk

µkϕ (Hk)+
τk
2

∥∥∥∇k

(
Y(n) −M

)
−Hk+G

(n−1)
k

∥∥∥2
2
.

(3)

Then we further alternatively solve the sub-problems
Y,El,Hk in Eq. (3). Note that the dual variables, i.e., Fl

and Gk, will also be updated in their corresponding sub-
problems.
Solving sub-problem Y. We use Y (•) to represent sub-
problem Y, whose formulation at the nth stage can be writ-
ten as follows:

Y
(
E

(n−1)
l ,F
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(n−1)
k
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2
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(4)

Then we obtain the partial derivative of sub-problem Y:

∂YY
(
E

(n−1)
l ,F

(n−1)
l ,H

(n−1)
k ,G

(n−1)
k

)
=

(
I+

L∑
l=1

ρl∇T
l ∇l +

K∑
k=1

τk∇T
k∇k

)
Y −EnsY,

(5)

where I denotes the identity map. EnsY =

M +
∑K

k=1 τk∇T
k

(
∇kM+H

(n−1)
k −G

(n−1)
k

)
+∑L

l=1 ρl∇T
l

(
E

(n−1)
l − F

(n−1)
l

)
. Let the partial derivative

be equal to zero, we achieve the closed-form solution for
Y at the nth stage:

Y(n) = (I+

L∑
l=1

ρl∇T
l ∇l +

K∑
k=1

τk∇T
k∇k)

−1EnsY. (6)



Metrics N=5 N=7 N=9 (Ours) N=11

SSIM 0.80 0.81 0.81 0.81
PSNR 18.06 18.47 18.73 18.72
AG 7.10 7.23 7.47 7.39
FMI 0.92 0.92 0.93 0.94

(a) Different stage numbers of DeRUN.

Metrics B=3,7 B=3,5 (Ours) B=5,7 B=3,5,7

SSIM 0.81 0.81 0.80 0.81
PSNR 18.63 18.73 18.56 18.73
AG 7.37 7.47 7.29 7.49
FMI 0.93 0.93 0.92 0.93

(b) Different combinations of LGDE loss.

I=4 I=8 (Ours) I=16 I=32

SSIM 0.81 0.81 0.81 0.80
PSNR 18.43 18.73 18.62 18.57
AG 7.20 7.47 7.31 7.16
FMI 0.92 0.93 0.93 0.92

(c) Different numbers of quantified gradient directions.

Table 1: Ablation study in the IVF task on the M3FD dataset. The best results are marked in bold.
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Figure 1: Different feature extractors with the same channel
number, where (a) is a common symmetrical feature extrac-
tor for domain interaction and (b) is the proposed PWSM.

Solving sub-problem El. Following [16], there exist
closed-form solution for Sub-problem El at the nth stage:

E
(n)
l = Sλl/ρl

(
∇lY

(n) + F
(n−1)
l ; {θl,i}Iti=1

)
, (7)

where Sλl/ρl
(•) is a nonlinear map following [17], which

is constrained by the predefined value map {θl,i}Iti=1 with
It = 101 with the following definition (the value map is
learnable in our DeRUN):

Sλl
ρl

(a; {θl,i}Iti=1) =


a+ θl,1, a < −λl/ρl
a− θl,It , a > λl/ρl
∆Vθl,(i+1)+(V−∆V)θl,i

V , |a| ≤ λl/ρl

(8)

where V is for step adjustment and is set as 0.02 fol-
lowing [17]. i = ⌊(a+ λl/ρl)/V⌋. {θl,i}Iti=1 is the
predefined value map to the corresponding points within
[−λl/ρl, λl/ρl] at a interval of V for noise removal.

Given the optimized E
(n)
l , the dual variable F

(n)
l can be

updated by dual ascent strategy:

F
(n)
l = F

(n−1)
l + φl

(
∇lY

(n) −E
(n)
l

)
, (9)

where φl is a fixed parameter for the step size.
Solving sub-problem Hk. Owing to the non-convex prop-
erty of sub-problem Hk, we apply the gradient descent
strategy to update Hk [2]. To begin with, we formulate
sub-problem Hk at the nth stage with function H (•):

H
(
G

(n−1)
k ,Y(n)

)
=
τk
2

∥∥∥∇k

(
Y(n) −M

)
−Hk+G

(n−1)
k

∥∥∥2
2

+ µkϕ (Hk) ,
(10)

where ϕ (a) =
∑

i log
(
1 + θa2i

)
, ai denotes the ith ele-

ment of a and θ is the sparsity controlled parameter for the

salient texture information [12]. Then we update H(n)
k with

gradient descent strategy [12]:

H
(n)
k = H

(n−1)
k − σk

(
∂Hk

H
(
G

(n−1)
k ,Y(n)

))
, (11)

where σk is the parameter that controls step size.
Having achieved H

(n)
k , we further optimize G

(n)
k from

the perspective of dual ascent:

G
(n)
k = G

(
G

(n−1)
k ,Y(n),H

(n)
k

)
,

= G
(n−1)
k + ωk

(
∇k

(
Y(n) −M

)
−H

(n)
k

)
,

(12)

where ωk is a controlled parameter for the step size.

B. Experiment

B.1. Ablation Study and Analysis

We evaluate the effect of DeRUN with four metrics, i.e.,
SSIM, PSNR, AG, and FMI, on M3FD, including the effect
of PWSM and parameter analyses for the stage number N ,
and the hyper-parameters I and B in the LGDE loss.
Parameter analysis of stage numberN . To ensure the ap-
propriate stage number, we set the stage number N to be
5, 7, 9, and 11, and test the fusion performance. As shown
in Tab. 1, to keep the trade-off between fusion performance
and inference time, we assign N to be 9. Note that even
N = 7 can outperform the SOTA techniques. Parame-
ter analysis of Llgde. In this section, we will analyze two
significant hyper-parameters of our proposed local gradient
directional entropy (LGDE) loss Llgde, i.e., the number of
the quantified gradient directions I and the size of the lo-
cal block B. As for I , we set I as 8 because most pixels
are surrounded by 8 adjacent pixels and we want to charac-
terize the effect of the surrounding 8 pixels of the middle
pixel on the gradient direction. As shown in Tab. 1, the
performance of I = 8 is higher than those of I = 4 and
I = 16, which arises from the fact that a too-small I leads
to the weak representational capacity of the gradient direc-
tion, while a too large I results in the too strict requirement
of the group property, i.e., tougher judgment on gradient di-
rection consistency. Furthermore, Tab. 1 verifies our claim
mentioned in the manuscript that LGDE is sensitive to the
block size B, where a larger size can ignore some detailed



(a) Infrared

(e) Depth map of Visible

(b) Visible

(d) DeRUN with (a)+(b)

(c) Visible+Misty Fog

(d) DeRUN with (a)+(c)

(d) Visible+Heavy Fog

(e) DeRUN with (a)+(d)

Figure 2: Failure cases of DeRUN. We simulate misty fog and heavy fog on the visible image (b) based on its depth map (a),
where DeRUN fails to enhance part of the salient texture information under the scenario with heavy fog.

texture and a smaller size can suppress the diversity of en-
tropy. To accommodate performance and efficiency, we se-
lect the LGDE with the block size of B = 3, 5 to jointly
extract the texture information in multi-scale.
Effect of PWSM. To demonstrate the advancement of par-
tial weight sharing module (PWSM) in feature extraction,
we compare PWSM with a fixed extractor, i.e., Canny op-
erator [1], a Siamesed extractor (from [17]), and a sym-
metrical extractor, i.e., (a) in Fig. 1, with the same chan-
nel number. Note that the symmetrical extractor shares the
same number of parameters as our PWSM. As presented
in Tab. 1, the best performance illustrates the superiority of
the proposed PWSM as a feature extractor.

B.2. Failure Cases and Future Works

In Fig. 2, we simulate misty fog and heavy fog on the vis-
ible image (b) based on its depth map (a) following [18, 8].
As shown in Fig. 2, the proposed DeRUN can preserve the
detailed component and enhance the salient texture infor-
mation when the visible image has a clean background or
is even degraded with misty fog. However, DeRUN fails
to enhance part of the salient texture information under the
scenario with uneven and heavy fog, which is mainly due
to the fact that the existing components of DeRUN do not
accommodate severe and uneven degradation. Therefore,
we will consider proposing targeted solutions for realis-
tic degradation scenarios, e.g., bi-level optimization [9], to
generate fused results that cater to more downstream tasks,
such as semantic segmentation [19, 15, 13].

Additionally, we will consider using other self-
excavation techniques to mine the valuable information
from a grouping perspective [20, 5] or incorporating more
powerful architectures, e.g., dynamic networks [4, 3], trans-

former [14], and diffusion model [10], with more strate-
gic pretrain networks, such as SimVTP [11]. Furthermore,
it would be desirable to employ image quality assessment
techniques [6, 7] to generate visual-friendly fusion results.
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