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Overview
Below is a summary of the contents in each section

of this supplemental material:

• Sec. 1: Details of calculating building shape type
and occupancy ratio.

• Sec. 2: Details of graph representation and canon-
ical spatial transformation.

• Sec. 3: Details of synthesis for building footprint
generation.

• Sec. 4: Details of dataset collection.

• Sec. 5: Ablation study of our model.

• Sec. 6: Comparisons to Diffusion Models.

• Sec. 7: User study on generation similarity.

• Sec. 8: Semantic manipulations on building row
number.

• Sec. 9: Generation using random interpolation.

• Sec. 10: Dead-end roads scenarios.

• Sec. 11: Applications to Urban Weather Forecast
Model.

• Sec. 12: Using our 28 cities, we show additional
results of random layout generation, controllable
generation, and a large-scale map.

1. Building Shape Determination

We select 4 shape types (Rectanglar, L-shape, U-
shape, and X-shape) that well represent most build-
ings. As Fig. 1 shows, for each building type, we use
Powell’s method to find the best parameters set (e1−10)
to achieve the highest IoU between the parameterized
template and the building contour. Then we choose
the shape type with the highest IoU as the building
shape si, which was described in main paper Sec. 3.1.
Following the simplification envelopes notion [7], these

shapes provide a close envelope around all buildings in
our dataset (average building diameter = 58.16m) with
average Hausdorff distance (an estimation of con-
tour deviation showed in upper-right of Fig. 1) of only
1.36m (stddev = 2.53m) and IoU = 95.78%. The
occupancy ratio ai is calculated by the building area
over the area of the oriented bounding box. This met-
ric is also used in the synthesis step described in main
paper Sec. 3.3 and Supplemantal Sec. 3.

2. Canonical Spatial Transform

Instead of the original geographic coordinate sys-
tem, we utilize a main axis based coordinate system
for the canonical spatial transformation. In Fig. 2,
similar to representation scheme used in [10], we first
calculate the 2D skeletonization of the city block poly-
gon and then we modify the two end sections of the
longest path in the skeleton to obtain the main axis.
The length W of the main axis is considered as the
width of the block. We calculate the distance from the
centroid of each building, Hi, to the main axis (y′i), and
its distance (x′

i) along the main axis from the starting
point. The distance of a building centroid from the
main axis is also referred to as the minor axis. We
label block height H as twice the value of the mean
minor axis length; i.e., H = 2 ·mean(Hi). Both block
width W and height H are utilized to normalize build-
ing position (x′

i, y
′
i) and size (wi, hi). The values after

normalization will be the attributes for G′ which is the
input to our method.

After the canonical spatial transformation, we
heuristically match each building (node) in the city
block to our 2D grid graph ([4, 30], N = 120). For
clarity, a detailed graph showing the connectivity of
an example G′ is presented in Fig. 3. Meanwhile, the
row number of the block is also given by the building
(node) matching (1, 2, 3, or 4 rows).
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Figure 1. Building Shape Determination. Powell’s method is utilized for searching the parameter set (e1−10) achieving
the highest IoU between the parameterized template and the building contour. The shape type obtaining the highest IoU
is determined as the building shape type input feature si. (The parameterized templates, and corresponding IoUs, are
sketched visualizations and calculations of Powell’s optimization process.)

3. Building Footprint Synthesis

We use our parameterized building shape functions
(Rectangular, L-shape, U-shape, X-shape) to obtain
synthetic footprints. Fig. 4 shows two examples of
our building footprint synthesis process. The shape
parameters of each generated building of given type ŝi
are randomly perturbed within a predefined range (e.g.
for U-shape in Fig. 4, e1

e2
∈ [0.5, 1.5] ) until a configura-

tion best satisfying the generated occupancy value ai is
found within a maximum number of iterations. Then,
the generated building footprint is rotated so that its
width dimension is again parallel to the block’s main
axis (as Fig. 2 shows).

4. Dataset Collection

We obtained our datasets by downloading 2D lay-
outs from OpenStreetMap (OSM) [8]. We chose 28
large cities having good OSM coverage: Chicago,
Washington D.C., New York City, Atlanta, Dallas, Los
Angeles, Miami, Seattle, Boston, Providence, Balti-
more, San Diego, San Francisco, Portland, Milwaukee,

Minneapolis, Austin, New Orleans, Phoenix, Denver,
Toronto, Vancouver, Austin, Houston, as well as Pitts-
burgh, Tampa, San Jose, and Norfolk. For the first 24
cities, we selected about 75% of the metropolitan area
for training and evaluation. In addition, we collected
additional testing regions from the remaining parts of
each city. The last four cities are not in our train-
ing or validation datasets and thus are effectively used
for out-of-distribution testing. In the paper and in this
supplemental section, we present visual results from the
testing regions (including the last four cities). Overall,
we observe that the performance of our method is con-
sistent across all cities.

We downloaded both the road networks and build-
ing footprints from OSM. We projected all geographic
coordinates to World Geodetic System 1984 (WGS 84)
coordinate reference systems. Then, we searched for all
simple cycles in the graph of road networks. Each sim-
ple road cycle represents a city block. We used each
simple cycle (city block) to find contained polygonal
shapes (i.e., building footprints). Both city blocks and
building footprints are the input for further graph rep-



Figure 2. Canonical Spatial Transform. Left: To calculate the main axis, we first simplify the city block contour to
a polygon (i.e., the shown black contour). Then we find the 2D skeleton of the polygon, which is represented by the show
interior dashed lines and the red solid lines. We search for the longest path of the skeleton indicated by red solid line and
red dash lines. Finally, we modify two end segments to point to the middle of the opposing block edges (i.e., blue solid line).
The length of the main axis is the block width W . Right: We calculate the distance from the centroid of each building to
the main axis (y′

i), and its distance alongside the main axis from the starting point (x′
i). The distance alongside the vertical

line intersecting each building’s centroid Hi is also collected. Twice the mean value is the building to main axis distances is
the building height H = 2 ·mean(Hi). Both block width W and height H are utilized to normalize building position (x′

i, y
′
i)

and size (wi, hi). The values after normalization will be the attributes for G′ which is the input to our method.

Figure 3. Graph Representation Visualization. Visu-
alization of the edge connectivity of an example input graph
G′. The nodes marked as non-existing and edges connecting
to it are not plotted. After our canonical spatial transfor-
mation, we heuristically match each building (i.e., node) in
the city block to our 2D grid graph ([4, 30], N = 120). The
main axis is marked as a horizontal red line.

resentation setup and initial training.

The distribution of total building numbers in each
city block is presented in Fig. 5 and the distribution
of number of building rows (heuristically calculated as
shown in Fig. 3) is presented in Fig. 6. These distribu-
tions motivate our selection of a maximum number of
buildings per city block (120) and the maximum num-
ber of rows (4). Using the 28 cities, we attempt, to
the best of our knowledge, to cover all city block types
in North America in order to benefit the generaliza-

tion capability of our method. This enables generating
high quality content as well as large-scale maps (e.g.,
Fig. 13).

5. Additional Ablation Study

We present an additional ablation study on model
structures and topology of graph representation, shown
in Tab. 2. Overlap index [6] is the percentage of to-
tal overlapping area among generated building layouts
within a city block. The Out-Block index is the per-
centage of generated building layout area that is out-
side of the city block contour. Position error (Pos-
E.) is the average percentage of building position er-
ror expressed as a percentage of city block’s diagonal.
Coverage error (Cov-E.) is the error of total building
coverage compared to the ground truth. Count error
(Ct-E.) is the error of total building count compared
to the ground truth.

In all cases, our current method utilized a 4x30 2D
grid graph (N = 120). For node existence, a one-hot

LayoutVAE [5] BlockPlanner[13] VTN [1]

Ours 98.0% / 2.0% 100.0% / 0.0% 100.0% / 0.0%

Table 1. Additional User Study on Similarity. We
show the results of an additional user study on reconstruc-
tion similarity. Values in cell indicate percentage of replies
supporting our method over a prior method.



Figure 4. Building Footprint Synthesis. Generated features {ŝi, âi} are utilized to synthesize building footprints with
corresponding shape type and also occupancy ratio. Our goal is to produce building footprints that are similar (but not
necessarily identical) to the original building coverages, positions, and shapes.

Ablations Overlap↓ Out-Block↓ Pos-E.↓ Cov-E.↓ Ct-E.↓

Ours-Meanpool 1.74 1.42 4.46 1.50 1.71
Ours-No-Onehot 2.54 1.26 5.61 2.50 4.68

Ours-128Latent 1.83 1.17 4.89 1.13 0.46
Ours-256Latent 1.54 1.50 4.63 0.68 0.26
Ours-1024Latent 1.19 1.17 3.40 0.29 0.15

Ours-4Head 1.37 1.32 4.19 0.89 0.70
Ours-8Head 1.35 1.44 3.67 0.074 0.090

Ours-Ring-Topo 10.39 1.32 14.00 3.67 9.73
Ours-2Row-Topo 1.47 1.42 4.60 0.86 0.37

Ours* 1.06 1.25 3.10 0.36 0.072

Table 2. Additional Ablation Study. We report reconstruction metrics (all in %) among various alternative designs.
Discussion of these graph representations and model designs are in Sec. 5.

Figure 5. Building Number Distribution: The distri-
bution of total building numbers per city block.

encoding of node index (0 ∼ 119) is concatenated. For
both encoder and decoder, our model structure stacks
3 graph attention layers [11] with 12 heads. We imple-
mented maximum pooling after each graph attention
layer, and we chose the latent vector dimension as 512.

Figure 6. Row Number Distribution: The distribution
of row numbers per city block.

For each ablation setting in Tab. 2, we only change
one component of our proposed model in order to
evaluate its influence on reconstruction. As shown,
max pooling outperforms mean pooling (“Meanpool”).
The one-hot encoding helps to obtain an accurate



L-Sim↑ Ovlp↓ (%) O-Blk↓ (%) FID↓ WD↓ (bbx) WD↓ (ct)

LayoutDM [4] 16.69 5.54 8.59 48.61 4.94 8.56
Liu et al . [3] 12.35 1.69 3.98 56.93 7.64 12.31

Ours (Tab.1) 22.45 1.42 0.89 14.94 1.45 0.06

Table 3. Quantitative Comparisons to DMs. We generate 1000 urban layouts and compare to the same amount of real
urban layouts. Best values are in bold.

building count prediction (“No-Onehot”). Longer la-
tent length of z does improve performance on Out-
Bound index and Coverage, but decreases other met-
rics (“128, 256, 1024Latent”). Thus the medium length
512 is chosen as our final model. More attention heads
benefits all metrics with decreasing growth rate (“4,
8Head”). We chose 12 heads to keep the balance of
model parameter size and performance. We also ex-
perimented with a ring graph topology as [13], but it
performed poorly on all metrics (“Ring-Topo”). As an
alternative, we also experimented with a 2D grid graph
of size 2×60 (“2Row-Topo”), which proved to be worse
than our final setting of 4× 30.

6. Comparisons to Diffusion Models

Under the same comparison scheme described by
Sec.4.2 in our paper. We provide quantitative com-
parisons to diffusion models [4, 3] trained with our
datasets. Tab. 3 extends Tab.1 of our paper with DMs,
and shows we still outperform.

7. Additional User Study on Similarity

In addition to the realism user study in the main pa-
per, we conducted a user study for similarity using our
method and three existing methods (LayoutVAE [5],
BlockPlanner [13], and VTN [1]) all trained with our
dataset. The study was performed back-to-back with
the same user group as our realism study. The recon-
struction task is to generate an urban layout similar to
a given real urban layout. The study is performed in a
two-alternative forced choice (2AFC) manner. We gen-
erated 18 comparisons, each containing a layout gen-
erated by our method and the same layout generated
by one of the three prior methods (thus 6 layout pairs
for each prior method). The urban locations do not
overlap across the three sets. In addition to the 18 bi-
nary choice questions, we included 2 random duplicate
questions for quality checking. Users that answered
differently to the same question were discarded as out-
liers.

During the study, we presented two candidate urban
layouts side-by-side from different methods on the left
side of the screen, meanwhile the reference real layout
was presented on the right side of the screen as a ref-

erence. Users were asked to choose which candidate
layout looks more similar to the given real world ref-
erence. Replies from 50 valid users are collected and
synthesized in Tab. 1. Our method clearly outperforms
other existing methods. In each test, at least 98.0% of
users are in favor of our method over other prior works.

8. Semantic Manipulations

Given our well-trained model, we conducted a study
of urban layout style control in latent space. The ex-
periment is similar to the face manipulation application
in [9]. We found that a certain extent of disentangle-
ment exists between different styles of urban layouts
(e.g., building arrangement in city blocks of a different
number of rows). As an example, we utilized our val-
idation dataset and labeled each urban layout by the
number of rows (i.e. 1, 2, 3, or 4 in our case). We en-
coded those layouts to the latent space, and found the
cluster centers of each of the four row-number groups.
Then, we calculated the direction vectors between pairs
of cluster centers. Moving a latent vector in the direc-
tion from the 1-row group cluster to the 4-row group
cluster corresponds to splitting buildings into smaller
ones and adding rows of buildings. In Fig. 7, we show
the style changing from 1-row style to 2, 3, or 4-row
styles, and vice versa. A similar style manipulation
could be performed on building counts, building sizes,
and other features as needed by future applications.

9. Interpolations

Our method can generate urban layouts by inter-
polating latent space between two given urban layouts.
In Fig. 8, we show layouts resulting from linearly inter-
polating both building layout latent vector, and block
shape latent vector from one to another. The interme-
diate layouts correspond to an intuitive style interpo-
lation.

10. Dead-end Roads

As Fig. 9 shows, our method can handle common
dead-end roads, such as cul-de-sac’s , but not all cases
of dead-end roads. The quality of our canonical spa-
tial transformation directly influences the positioning



1-Row (Original)→ 2-Row→ 3-Row→ 4-Row

4-Row (Original)→ 3-Row→ 2-Row→ 1-Row

Figure 7. Semantic Manipulation by Row Number: First Row: We select a region that mostly contains 1-row style
city blocks. By gradually moving its latent vector towards the 4-row cluster center, we manipulate its original style from
1-row to close to 4-rows. Second Row: We select a region that mostly contains 4-row style city blocks. Similarly, by
gradually moving its latent vector towards the 1-row cluster center, we change the original style from 4-rows to about 1-row.

Figure 8. Interpolation. Our method is able to simultaneously interpolate between different block shapes (and scale) and
different building layouts by linear interpolation. Our method generates smoothly changing interpolations (Rectangular
bounding box indicates block shape and scale interpolation as an invariant reference.)

of buildings around dead-end roads. Owing to irregular
dead-end roads (as the second row in Fig. 9), concave
and complex block contour may result in ugly main
axis during 2D skeletonization in Fig. 9, and the im-
perfect main axis will further influence the quality of
the inverse spatial transformation. Thus some building
footprints will overlaps the dead-end roads in the final
output maps.

11. Urban Weather Forecast Applica-
tions

We implement sparse prior generation as described
in main paper Sec. 4.4. Based on the generated 3D
building mass models of the entire Chicago, we cal-
culate a selected set of urban canopy parameters as
recommended by [12]. They are plan area ratio, area-
weighted building height, building surface to plan area
ratio, and building height distribution (detailed defi-
nitions in [12]). Those parameters are the input of a
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Figure 9. Dead-end Roads. Our method can handle com-
mon cul-de-sac (the first row), but not other irregular dead-
end road scenarios (the second row). The main impact fac-
tor is the quality of our canonical spatial transformation.

given urban weather forecast system (WRF [2]) to sim-
ulate wind speed and surface temperature.

The visualizations of our generated urban canopy
parameters are showed in Fig. 10, and accuracy evalu-
ations of our results compared to the ground truth are
showed in Fig. 11. Our method generates vector-based
3D building mass models which can be rasterized into
any given resolution. This is a contribution to urban
meteorology academia where common spatial resolu-
tion is coarser than 500m. Moreover, our method can
produce plausible urban canopy parameters given only
small portions of input prior (e.g., 5%). This bene-
fits the data equity problem in medium or small cities
where complete datasets are not available.

The final WRF simulation results (during a winter
date, 12/10/2011) are showed in Fig. 12. The simula-
tion model is based on our 3D building mass model
generated from only 5% prior data yielding a simi-
lar simulation result to that produced using ground
truth. Our average per-pixel wind-speed prediction er-
ror is 0.23m/s, and average per-pixel surface tempera-
ture prediction error is 0.11 C◦.
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Figure 10. Urban Canopy Parameter Results. We
show the qualitative comparisons between our generated
urban canopy parameters to the ground truth (pixel res-
olution = 50m). Our method produces plausibly similar
results compared to the ground truth.



Figure 11. Accuracy over resolution and given per-
cent of prior. We show the quantitative comparisons
between our generated urban canopy parameters to the
ground truth under a range of spatial resolution (50m
1km).
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Figure 12. Urban Weather Forecast Simulation. We
use our generated 3D building mass model (given only 5% of
prior) to drive an urban weather forecast model (WRF [2]).
The simulation results for wind speed and surface temper-
ature show nearly identical results compared to the ground
truth. Our average per-pixel wind-speed prediction error is
0.23m/s, and average per-pixel surface temperature predic-
tion error is 0.11 C◦.



12. Controllable Generation Results

We show many generated urban layouts based on
the test regions of our multiple cities. Fig. 13 contains
a large-scale generated map based on the test region of
Vancouver. Fig. 14 shows a zoom-in of the red box in
the large-scale map. These figures show the potential of
our method for city-scale generation. To generate this
large-scale map, we randomly select a few percent of
the city blocks in the test region and use those to obtain
a narrow latent distribution of the latent space (i.e., in
Fig. 13 we select 1%). Then, we sample from that
distribution in order to populate the entire map. Our
generated building layouts are all realistic and similar
to the real OSM layouts bounded by green bounding
boxes (as in Fig 13 and Fig. 14).

Fig. 15 contains close-ups of a fragment of the test
region of 8 different cities. For each city, we generate
a big-map in a similar way as described in the prior
paragraph. Fragments are cropped as about 1

16 size
of a zoom-in view similar to Fig. 14. Building layouts
are diverse in building counts, size, and arrangement
across the many city blocks. But all generated lay-
outs are realistic and feasible. These examples aim to
demonstrate our realistic and diverse generation ability
of urban layouts.

For applications that require similarity to a given
urban layout (e.g., data augmentation, urban design),
we provide three experiments to demonstrate control-
lable generation (shown for 5 cities, including 3 test-
only cities – they were not used in training) in Fig. 16.
The controllable generation aims to generate layouts
that are similar to a given pattern, but also keep real-
ism.

For the first experiment (“Prior”), we provide the
urban layout (i.e. prior) to the encoder for each city
block and then generate a corresponding layout, effec-
tively performing a reconstruction task. In this case,
high similarity between “Prior” and “Real Data” im-
plies that our method is able to capture and reproduce
the styles and details of a large variety of urban layouts.

For the second experiment (“Noised Prior”), we add
Gaussian noise to each learned prior. This enables
introducing a controllable amount of randomness in
building size, count, and arrangement within each city
block. The similarity of the (“Noised Prior”) column
to “Real Data” column depends on the amount of noise
added.

For the third experiment (“Random Interpolation”),
we generate new latent codes for each city block by
interpolating between the latent space priors of two
random blocks. This process will force novel content
to be created but ensuring a level of similarity to the
“Real Data” column.



Figure 13. Large-scale Map (mosaic with real OSM). We show a large-scale map generated by our method. A zoom-in
view of the layout in the red box is in Fig. 14. Green bounding box: Real OSM layouts. The rest: Our generated layouts.



Figure 14. Zoom-in of Large-Scale Map (mosaic with real OSM). The zoom-in view of the red box in Fig. 13. Green
bounding box: Real OSM layouts. The rest: Our generated layouts.



Tampa Real Data Toronto Real Data

Boston Real Data Miami Real Data

D.C. Real Data San Francisco Real Data

Phoenix Real Data Austin Real Data
Figure 15. Generated Layouts. Given arbitrary road networks from our testing regions, we generate urban layouts for 8
cites. The random generation aims to keep realism and diversity. Building layouts are diverse in building counts, size, and
arrangement across different urban blocks but all generated layouts are plausible for the given road network.
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Random Interpolation Noised Prior Prior Real Data
Figure 16. Controlled Generation of Layouts: Given arbitrary road networks, we generate urban layouts by recon-
struction from the learned priors (“Prior”), by adding Gaussian noise to learned priors (“Noised Prior”), and by random
interpolation between all possible pairs of learned priors (“Random Interpolation”). The controllable generation aims to
generate layouts that are similar to a given pattern, but also keep realism. The real data are presented for reference. This
figure includes Pittsburgh, Norfolk, San Jose, Dallas, and New York City.
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