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In this supplementary material, we provide detailed im-
plementation information of the speech-assisted monocular
3D facial reconstruction module, additional experimental
results, and a description of the supplementary video.

1. Implementation Details of Speech-Assisted
Monocular 3D Face Reconstruction

We trained our monocular 3D face reconstruction net-
work with λcon = 0.025, λlmk = 50, λeye = 25, λlp = 25,
λpho = 25 and λemo = 0.5. λreg consists of regulariza-
tion terms of jaw λθjaw = 200 and expression λψ = 1e−3.
For the weighted landmark loss, we set different weights for
key points in different areas. Weights of landmarks related
to the jaw were set to 2, weights of mouth corners and nose
tips landmarks were set to 3, other mouth and nose land-
marks were weighted by a factor of 1.5, and the remaining
landmarks had the same weight of 1.0.

For contrastive learning, we extracted information con-
tained in the speech by a fixed pre-trained wav2vec 2.0,
which could learn powerful representations from speech.
We took hidden states from the last layer of the Transformer
architecture as the speech features. These features have a
frequency of 49 Hz with a stride of about 20 ms between
each sample. We linearly interpolated them to approxi-
mately double the video frame rate. For example, speech
features were resampled to 60 Hz for the MEAD dataset in
which the videos are 30 fps.

2. Additional Comparison Results on Speech-
Assisted Monocular 3D Face Reconstruc-
tion

Full face error: To provide more comprehensive quanti-
tative results, we compare our algorithm with DECA and
EMOCA on the full face error. Tab. 1 shows that our model

achieves a full face error much better than DECA and com-
parable to EMOCA. However, our method improves signif-
icantly on lip vertex error, which is more relevant for au-
dio2mesh, as shown in the paper.

Loss DECA EMOCA Ours
Face Vertex Error ↓ 2.686e−2 2.401e−2 2.439e−2

Table 1: Full face error.

Comparison with SPECTRE: Since SPECTRE [3] is a
contemporaneous work and has not been published, we did
not compare it in the body text. Here, we compare the lip
vertex error on the VOCASET dataset as in Tab. 2 and
demonstrate some reconstruction results in Fig. 1. As il-
lustrated in the results, our method exhibits superior perfor-
mance over SPECTRE in capturing the dynamic motion of
the mouth. Notably, the mouth shape as depicted in SPEC-
TRE may appear over-exaggerated in certain instances, as
shown in the bottom row of the figures.

Metric Ours SPECTRE
Lip Vertex Error ↓ 0.995e−2 1.261e−2

Table 2: Reconstruction error on VOCASET.

Figure 1: Comparison with SPECTRE on reconstruction re-
sults, left: RGB image; middle: ours, right: SPECTRE.



Comparison of Visualization Results with EMOCA: We
would like to further compare our method with EMOCA
[2], which can produce expressive results on emotional im-
ages (especially on the upper face region). However, in
practice, it is not capable to capture the mouth geometry
accurately (see Fig. 2) and might induce exaggerated ex-
pressions even for the images with neutral emotion. This at-
tribute may render EMOCA unsuitable for the pre-training
audio2mesh model.

Figure 2: Comparison with EMOCA on reconstruction re-
sults, left: RGB image; middle: EMOCA, right: ours.

3. Additional Ablation studies
Analysis of the impact of MEAD dataset on Monocular
3D Face Reconstruction: Because the MEAD dataset con-
tains strong emotions and exaggerated expressions and be-
cause other methods, except for EMOCA, were not trained
on the MEAD dataset, we further conducted an ablation
study for the sake of fairness in comparison and to inves-
tigate if such strong emotions would affect the reconstruc-
tion result. We removed MEAD dataset from our train-
ing dataset and only trained our reconstruction model using
VoxCeleb2 dataset, and the result is shown in Fig. 3. We
can find that removing the MEAD dataset does not show
significant degeneration in the reconstruction.

Figure 3: Reconstruction results w/wo training on MEAD.

Analysis of the impact of pre-training and fine-tuning
on audio2mesh: For the training of our audio2mesh mod-
ule, we first pre-trained it using 3D reconstructions obtained
from our 3D face reconstruction module and then fine-tuned
it using 4D scans from VOCASET. To investigate the im-
pact of both the pre-training stage and the fine-tuning stage,
we conduct an additional ablation study as shown in Tab.
3. Random is the result without either pre-training or fine-
tuning. It indicates that both pre-training and fine-tuning
play significant roles in our method.
Visualization Analysis of Contractive Loss’s Impact on
Monocular 3D Face Reconstruction: To further investi-

Metric Random Pre-train Fine-tune
Lip Vertex Error ↓ 1.849e−2 8.491e−3 4.863e−3

Table 3: Ablation study on pre-train and fine-tune.

gate the impact of our contrastive loss on the reconstruc-
tion results, we conducted an additional visualization anal-
ysis as shown in Fig. 4. Our findings indicate that training
with contrastive loss can significantly improve the quality
of 3D reconstruction, particularly in the mouth region. The
third column of images was trained without contrastive loss,
which performs inconspicuous lip deformations compared
to the second column which was trained with contrastive
loss.

Figure 4: Ablation study on the contrastive loss w.r.t. the
reconstruction quality.

We further visualized the t-SNE plots of the audio fea-
tures and expression features extracted by the audio en-
coder Es and the expression encoder Ee in our reconstruc-
tion module. We compared three different results: train-
ing with contrastive loss, training with L2 loss, and train-
ing without either contrastive loss or L2 loss. As shown in
Fig. 5, the original (left) audio features are clustered in ad-
jacent frames, while the expression features do not have a
clear distribution pattern. After training with L2 loss (mid-
dle), the audio features and expression features are simply
pulled closer together. However, after training with con-
trastive learning loss (right), the expression features show a
clustered aggregation phenomenon similar to the audio fea-
tures, indicating that the audio information has influenced
the distribution of expression features and led to the cluster
of positive samples.

Figure 5: T-SNE plots of audio features and expression fea-
tures extracted by the reconstruction module.

Comparison of Contractive Loss and L2 loss: We also
conducted a comparative experiment to investigate the im-



provement in reconstruction results using contrastive loss.
We replaced contrastive loss with L2 loss, and the results
are shown in Tab. 4. The results demonstrate that compared
to L2 loss, contrastive learning loss can better improve the
reconstruction of the mouth region.

Metric L2 loss Contrastive loss
Lip Vertex Error ↓ 1.068e−2 0.995e−2

Table 4: Ablation study on pre-train and finetune.

4. Generalizability of Our Framework
To show that our proposed framework can be easily ap-

plied to other audio2mesh methods, we also conducted a
verification based on VOCA [1]. We first pre-trained VOCA
with pseudo-4D meshes reconstructed from the MEAD
dataset and then fine-tuned it with the VOCAset. Due to
the convolutional module in VOCA, we chose only 8 sub-
jects from the MEAD dataset (42 subjects in total) with the
mildest emotional intensity in the pre-training phase. The
results, as presented in Tab. 5, indicate that VOCA with our
framework achieves a lower lip vertex error. This improve-
ment is due to the larger amount of training data, which
demonstrates that our framework effectively addresses the
data scarcity issue of 4D scans. With more reconstructed
meshes from 2D videos, we can expect even greater im-
provements in future works.

Metric VOCA wo. pre. VOCA w. pre.
Lip Vertex Error ↓ 6.428e−3 6.108e−3

Table 5: Comparison between pre-trained and non-pre-
trained models of VOCA.

5. Description of the Supplementary Video
The supplementary video contains three parts:

1. In the first part, we show the speech-assisted 3D face
reconstruction results on different video datasets along
with other competitive monocular 3D face reconstruc-
tion methods (including 3DDFA-V2, Deep3DFace py-
torch version, DECA, and EMOCA). From the videos,
we can see that our method significantly outperforms
other methods, especially on the lower face region,
which plays a more important role in the downstream
speech-driven facial animation task.

2. In the second part, we compare our speech-driven
3D facial animation method with FaceFormer (SOTA
method in speech-driven facial animation), VOCA,
and MeshTalk with different speeches. Besides, we

also directly compare our animation results with the
videos from FaceFormer’s supplementary materials. It
can be found that our animated faces are more expres-
sive and perceptually reasonable, especially for some
syllables that need pursed lips.

3. In the final part, we demonstrate the emotional control-
lability of our model. By pretraining the audio2mesh
module on the reconstructed emotional talking head
dataset (i.e., MEAD), our method can embed 7 emo-
tions in the animated talking head.
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