
Supplementary Material for
Towards Deeply Unified Depth-aware Panoptic Segmentation

with Bi-directional Guidance Learning

1. Implementation Details

1.1. Network

We choose ResNet-50 [3] and Swin-B [6] as the shared
backbone, initialized with ImageNet-1K [2] pre-trained
checkpoints1. We also use the multi-scaled deformable at-
tention Transformer (MSDeformAttn [12]) as the decoder
for both the semantic and depth branches, for consistency
with the previous work [1]. The Transformer decoder com-
prises l = 9 layers to process per-segment queries, with
a total of N = 100 queries used. The latent represen-
tation has the same dimension as the per-segment query:
Rl ∈ RN×E , where E = 256.

1.2. Training

To align with previous practices [8, 11], our training pro-
cess comprises two steps. Initially, we train the segmen-
tation branch exclusively for 50 epoches; then, we fine-
tune the entire model for an additional 10 epoches with
bi-directional guidance learning added. We use Detectron2
[10] and 8 Titan RTX GPUs for training, with a batch size
of 16 and 8 in the two training steps, respectively. Dur-
ing training, We adopt AdamW [7] optimizer (β1 = 0.9
and β2 = 0.99) with a poly learning rate schedule, and a
learning rate multiplier of 0.1 is applied to the backbone.
Additionally, large-scale jittering (LSJ) [5] and horizontal
flipping are also utilized.

In the first step, we randomly resize the original images
to a scale ranging from 0.5 to 2.0, followed by a fixed-size
crop of 512 × 1024 on Cityscapes-DVPS and 384 × 1280
on SemKITTI-DVPS. For all backbones, we set an initial
learning rate of 0.0001 and a weight decay of 0.05. In the
second step, we fine-tune the model using full-resolution
images and reduce the initial learning rate to 0.00005.

λdepth λ = 0.5 λ = 0.25 λ = 0.1 DPQ PQ abs rel

1.0 69.28 67.10 51.87 62.75 69.49 0.0644
2.5 69.30 66.82 52.78 62.97 69.49 0.0632
5.0 69.07 66.64 52.20 62.64 69.25 0.0630

Table 1: Ablations of depth loss weight λdepth on
Cityscapes-DVPS. We keep the segmentation loss weights
(λcls and λmask) unchanged and only modify λdepth.

2. Hyper-parameter Analysis

We perform additional hyper-parameter analysis, specif-
ically adjusting the weights for loss terms and hyper-
parameter settings in bi-directional guidance learning. To
avoid excessive hyper-parameter tuning, we maintain con-
sistency with most of the hyper-parameters used in previous
studies [1, 4], and we use ResNet-50 [3] backbones for our
experiments.

Initially, we show the impact of different depth loss
weights on Cityscapes-DVPS [9] in Tab. 1. We keep the
other loss weights unchanged (where λcls = 2, λmask = 5
as in [1] and λsg = λdg = 0.1), and only modify λdepth.
Despite altering the depth loss weights, the panoptic seg-
mentation (PQ) and quality of the depth map (abs rel) re-
main relatively stable. This outcome is akin to the results
found in [11], where a unified architecture is less suscepti-
ble to weight loss choices, providing a significant advantage
over prior approaches [9].

K PQ abs rel DPQ

3 69.45 0.0633 62.95
5 69.49 0.0632 62.97
7 69.42 0.0635 62.91

Table 2: Ablations of bi-directional guidance learning with
different patch size K.

1We use official pre-trained models of ResNet [3] from https:
//github.com/facebookresearch/detectron2 and Swin [6]
from https://github.com/microsoft/Swin-Transformer

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/microsoft/Swin-Transformer


Furthermore, we conduct experiments using various con-
figurations in bi-directional guidance learning, encompass-
ing patch size K, applying layers L, and gap parameter
α. The layers include L = 0, 1, 2, 3, which correspond to
features of ×1/32,×1/16,×1/8,×1/4 resolutions of the
original images.

In Tab. 2, Tab. 3, and Tab. 4, we contrast the outcomes
of various patch sizes, applying layers, and gap parameters,
respectively. The results indicate that the performance re-
mains relatively stable across different settings, and we se-
lect the optimal configuration based on experimental out-
comes (i.e., K = 5, L = 1-3, and α = 0.3).

L PQ abs rel DPQ

0-3 69.49 0.0634 62.96
1-3 69.49 0.0632 62.97
0-2 69.47 0.0636 62.94

Table 3: Ablations of bi-directional guidance learning with
different applying layers L.

α PQ abs rel DPQ

0.1 69.47 0.0632 62.95
0.2 69.48 0.0631 62.97
0.3 69.49 0.0632 62.97
0.4 69.48 0.0629 62.96

Table 4: Ablations of bi-directional guidance learning with
different gap parameter α.

3. Visualization Results
We provide additional visualizations of panoptic seg-

mentation and depth estimation results for comparison on
Cityscapes-DVPS and SemKITTI-DVPS datasets.

In Fig. 1, we present the ablation qualitative results of
depth prediction with the proposed components applied.
The results indicate that, with the extra backup query in-
corporated, the predicted depth map produces more previse
depth values on filtered-out regions (depicted in black color
in the segmentation result in the last row). Moreover, the
bi-directional guidance learning incorporated in our model
enhances its ability to capture more details, specifically on
object boundaries, thus enhancing the quality of the pre-
dicted depth map.

In Fig. 2, we conduct a comparison of the visualiza-
tions of prediction results with recent state-of-the-art meth-
ods, namely PanopticDepth [8] and PolyphonicFormer [11].
We utilized the publicly available pre-trained networks with
ResNet-50 backbones provided by the authors. Further-
more, in Fig. 3, we present additional visualization results

on SemKITTI-DVPS.
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Figure 1: Qualitative results of depth predictions with proposed components applied.
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Figure 2: We compared the prediction visualizations of our method with those of previous methods on Cityscapes-DVPS [9].
Specifically, we evaluated the visualizations of (a) PanopticDepth [8], (b) PolyphonicFormer [11], and (c) our own method.
Results are obtained from authors’ public pretrained networks.



Figure 3: Visualizations results on SemKITTI-DVPS [9].
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