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1. Implementation Details
The following sections go into the details of our imple-

mentation of FUS3D and discuss the nuances involved in
training our system.

Loss function and matching cost A bounding box pre-
dicted by the FUS3D system consists of the attributes: box-
center location loc ∈ R3, box dimensions dim ∈ R3,
facing direction as a normalized orientation vector in the
ground plane dir ∈ R2, a confidence score conf ∈ R, a
centerness attribute center ∈ R and a class probability dis-
tribution cls ∈ Rncls , where ncls is the number of object
classes considered in the given setting.

For a matched pair of a ground truth bounding box b and
a predicted bounding box b̂, generated either by the FUS3D
detection stage or the FUS3D tracking stage, the training
loss is a weighted sum of losses corresponding to the indi-
vidual attributes:

Lbox(b, b̂) := cloc MSE(bloc, b̂loc)

+ cdim MSE(bdim, b̂dim)

+ cdir (1− bdir · b̂dir)

+ ccenter MSE(bcenter, b̂center)

+ ccls CE(bcls, b̂cls)

+ cconf BCE(1, b̂conf ),

(1)

where MSE is the mean squared error, CE denotes the
cross-entropy between two class distributions, BCE is the
binary cross-entropy loss, and all constants c∗ are non-
negative scalars. For unmatched predictions, the loss sim-
plifies so that only the term corresponding to the box confi-
dence remains, i.e. Lbox(b̂) := cconf BCE(0, b̂conf ).

Apart from scaling constants, the box loss function
Lbox given in Equation (1) is nearly identical between the
FUS3D detection and the tracking stages. The only notable
difference are 1. the absence of the centerness loss in the
tracking stage (i.e. ccenter = 0), and 2. the location target

for the tracking stage is given as a position in world space,
whereas for the detection stage we instead predict the offset
between the associated cell center and the ground truth
location. Furthermore, we experiment with the additional
use of a holistic differentiable 3D LGIoU or LDIoU loss [6].
Our experiments show that they can provide a small gain
in detection performance, but are coupled with a notable
increase in training time per batch due to their inherent
complexity. This is despite the availability of efficient
implementations 1.

The process of matching predictions to ground truth
bounding boxes requires further distinction between the de-
tection and tracking stage:

• Detection In the detection stage, each prediction is as-
sociated with a cell, which in turn represents a region
in 3D space. It is matched with a ground truth bound-
ing box if and only if the corresponding cell center lies
within the box interior.

• Tracking In the tracking stage, matching of newly
acquired tracks is done using the Hungarian Algo-
rithm [2]. The matching cost between a ground truth
box b and an anchor box b̂ is given by:

Cmatch(b, b̂) := ∥bloc − b̂loc∥2 + LDIoU (b, b̂), (2)

where LDIoU is a 3D version of the Distance-IoU
loss [5]. Matching with existing tracks is achieved im-
plicitly by enforcing that the track query appears at the
same latent token index as on the previous time step.

For a set of ground truth objects B and a set of predicted
objects B̂ at time step t, let σt

match ⊆ B × B̂ be the set of
matched bounding box pairs and let σt

neg ⊆ B̂ be the set of
unmatched predictions. The combined loss for a single time

1https://github.com/lilanxiao/Rotated IoU



step t is thus given as

Lt
stage :=

∑
(b,b̂)∈σt

match

Lbox(b, b̂) +
∑

b̂∈σt
neg

Lbox(b̂),

(3)
where stage ∈ {det, track} indicates if the loss is applied
to the FUS3D detection or tracking stage.

Finally, since the full FUS3D system must perform prop-
agation and association of tracks over time, we have to de-
fine a loss that is applied over a continuous time interval.
This total loss Ltotal, applied over a period of n time steps,
is given as a weighted sum over the individual single-frame
losses:

Lt
total :=

n−1∑
i=0

λt−i

(
Lt−i
det + Lt−i

track

)
, (4)

where (λ1, . . . , λn) is a sequence of positive scalars weight-
ing the losses of the individual time steps according to their
importance. We obtain best results with a monotonically
decreasing sequence, thus giving higher importance to ini-
tial track acquisition and reduced weight on later propaga-
tion. The length of the training period n is chosen in the
6 − 10 step range. We apply a loss to both stages of the
FUS3D system, even if the detection stage is already pre-
trained, since the loss on the detection stage is the only
mechanism that enforces an association between cells / to-
kens and a specific region in world space. Removal of Ldet

would therefore lead to instability during the training phase.

Training strategy We find that training of the FUS3D
system requires a multi step approach to achieve full perfor-
mance. Best results on the MIPT dataset [1] were obtained
using a four-step approach. Adaptations may be required if
the system is applied to other datasets:

1. Initially, the focus lies on object detection alone. We
disregard the tracking stage and train the first stage as
a standalone object detector on individual time steps
using the loss function Lt

det given in Equation (3).
Furthermore, we restrict training to a single ”Human”
class, no differentiation between the different pose
classes ”Standing”, ”Sitting” and ”Lying” is made.
The reasoning for this approach is a significant im-
balance in the class distribution of the MIPT dataset
with approximate fractions of 0.66, 0.24 and 0.1 re-
spectively.

2. Second, the pretrained object detection stage obtained
from the first step is finetuned on the multi-class task.
Using this approach, as opposed to directly training the
multi-class problem from scratch, leads to an improve-
ment in the mAP score of about 5 percentage points.

3. The third step unlocks the second stage. We freeze the
weights of the now pretrained object detection stage

and train the tracking stage until convergence. This
step requires training over multiple time steps and thus
the use of the full loss function given in Equation (4).
Due to the frozen state of the first stage, the Lt

det term
has no effect at this point. Training the two stages indi-
vidually first has the further advantage that the learning
rate schedule can be adapted to each stage. Further-
more, the transformer-based tracking stage takes about
twice the number of epochs to reach full convergence.

4. Finally, we unfreeze the first stage and finetuning the
entire FUS3D system end-to-end. This step gives an-
other small improvement in all performance metrics.

Track augmentation There are three main tasks that
any tracking algorithm must perform: Acquisition of new
tracks, propagation of existing tracks, and removal of old
tracks that are no longer valid. In terms of frequency of
occurrence, propagation is the predominant task, while ac-
quisition and removal are comparatively rare events. Our
approach to dealing with this imbalance is a form of data
augmentation applied to tracks, as proposed by Track-
Former [4]. Artificial false negative tracks are generated
by dropping track queries passed from one time step to the
next. We find this step to be critical to achieve higher re-
call on the acquisition on new tracks. In a similar man-
ner, we can generate artificial false positive tracks. This is
achieved by either falsely promoting object queries to track
queries, or by keeping track queries that should have been
dropped. We also experimented with randomly dropping
entire frames in a sequence in order to simulate sensors with
an unreliable frame rate or, equivalently, objects with large
variation in movement speed. However, the latter was found
to have no positive effect.

Hyperparameters and optimization Our model oper-
ates on images of size 320 × 320 pixels as input. Within
the CNN backbone, these images undergo downsampling to
form a tensor of dimensions h = w = 10 with cd = 1056
channels. In preparation for the subsequent tracking stage,
this tensor is reshaped into a 4D representation, featuring
a depth of d = 24 and c = 44 channels per individual
cell. Through the application of a two-layer Multi-Layer
Perceptron (MLP), each cell is expanded into tokens with
dimensions c′ = 128. These dimensions were determined
through a comprehensive grid search, aiming to balance the
enhancement of both detection and tracking metrics while
ensuring an acceptable frame rate on the Jetson Nano target
device.

Furthermore, an additional grid search was executed
to find optimal thresholds for track addition and removal,
which were determined as τadd = 0.12 and τremove = 0.58,
respectively.



For training of the FUS3D detection stage, we use the
AdaBelief optimizer [7]. For our use-case this optimizer
consistently demonstrates superior performance compared
to alternatives like AdamW [3] or SGD. Our chosen config-
uration uses weight decay wd = 10−4 and an initial learn-
ing rate of lr = 10−3. Throughout the training process, the
learning rate for the detection stage undergoes multiplica-
tive decay in γ = 0.1 steps, gradually reaching a minimum
value of 10−6 through a series of steps triggered upon en-
countering plateaus in the learning curve.

In the context of the tracking stage, we opt for the
AdamW optimizer with a weight decay of 3 · 10−3. The
initial learning rate for this stage is also set at 10−3, with
the learning rate schedule following a cosine annealing pat-
tern.
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