
Supplementary Material of “Understanding Hessian Alignment for Domain
Generalization”

Sobhan Hemati∗ Guojun Zhang∗ Amir Estiri Xi Chen
Huawei Noah’s Ark Lab

{sobhan.hemati, guojun.zhang, amir.hossein.estiri1, xi.chen4}@huawei.com

A. Proof of Proposition 4
Proof. To formulate the classifier head of the neural network, let zi be the i-th component of the feature vector before the
classifier layer and the classifier’s parameter θ is decomposed to wk,i, the element in row k and column i of the classifier
weight matrix, and bk, the bias term for the k-th output. We define ak as

ak =

c∑
i

wk,izi + bk, (24)

where c is the number of classes. Given ak, if we assume the classifier activation function σ(·) to be softmax, the classifier
output for the k-th neuron can be written as

ŷk = σ(ak) =
eak∑c
j=1 e

aj
, (25)

Now, if we denote (x,y) as the sample and ŷ as the associated output, and assume the loss function be cross-entropy

ℓ(x,y;θ) = −
c∑

l=1

yl log ŷl, (26)

Having the loss function, we proceed to calculate the gradients and hessian of loss with respect to classifier parameters wp,q

and bp is

∂ℓ(ŷ,y;θ)

∂wp,q
=

c∑
l=1

∂ℓ

∂ŷl

c∑
k=1

∂ŷl
∂ak

∂ak
∂wp,q

. (27)

∂ℓ(ŷ,y;θ)

∂bu
=

c∑
l=1

∂ℓ

∂ŷl

c∑
k=1

∂ŷl
∂ak

∂ak
∂bu

. (28)

Given that the activation function is a softmax function ŷl = σ(al) =
eal∑
j eaj , the ∂σ(al)

∂ak
can be calculated as:

∂σ(al)

∂ak
= σ(al)δl,k − σ(al)σ(ak). (29)

Now, using Eq. 29, we can rewrite Eqs. 27 and 28 as follows:

∂ℓ

∂wp,q
= (ŷp − yp)zq,

∂ℓ

∂bu
= (ŷu − yu). (30)

*Equal contribution.



For the Hessian, we only calculate the elements of matrix that are only related to the classifier layer. More precisely, we
calculate ∂2ℓ

∂wu,v∂wp,q
, ∂2ℓ
∂wp,q∂bu

, and ∂2ℓ
∂bu∂bv

. For the ∂2ℓ
∂wu,v∂wp,q

we can write

∂2ℓ

∂wu,v∂wp,q
=

∂

∂wu,v
((ŷp − yp)zq) . (31)

To calculate the above expression, we need ∂ŷp

∂wu,v
:

∂ŷp
∂wu,v

=
∑
k

∂ŷp
∂ak

∂ak
∂wu,v

=
∑
k

∂σ(ap)

∂ak

∑
i

δk,uδi,vzi =
∑
k

σ(ap)(δp,k − σ(ak))δk,uzv = ŷpzv(δp,u − ŷu) (32)

Now, incorporating eq. 32 into eq. 31, the elements of Hessian matrix in classifier layer i.e., ∂2ℓ
∂wu,v∂wp,q

, we have:

∂2ℓ

∂wu,v∂wp,q
= zqzv ŷp(δp,u − ŷu). (33)

For ∂2ℓ
∂wp,q∂bu

we can write

∂2ℓ

∂wp,q∂bu
=

∂

∂bu
((ŷp − yp)zq) =

∂(ŷp − yp)

∂bu
zq =

∑
k

∂ŷp
∂ak

∂ak
∂bu

zq = zq ŷp(δp,u − ŷu). (34)

Eventually, for ∂2L
∂bu∂bv

we have:

∂2ℓ

∂bu∂bv
=

∂

∂bv
(ŷu − yu) =

∑
k

∂ŷu
∂ak

∂ak
∂bv

= ŷu(δu,v − ŷv). (35)

B. Alignment attributes in Hessian and gradient in regression task with mean square error loss and
general activation function

In this section, we extend our analysis to regression tasks for real numbers. We show that the classifier head’s gradient and
Hessian yield similar information of the features. To adapt our framework to regression, we replace the meaning of σ from
softmax to an arbitrary uni-variate activation function.

Proposition 5 (Alignment attributes in Hessian and gradient for mean square error loss and general activation function).
Let ŷ and y be the network prediction and true target associated with the output neuron of a single output network, σ(·) be the
activation function, zi be the i-th feature value before the last layer (regression layer). Suppose the last layer’s parameter θ
is decomposed to wi, the i-th element of the weight vector, and b, the bias term. Matching the gradients and Hessians with
respect to the last layer across the domain aligns the following attributes

∂ℓ

∂b
= (ŷ − y)σ′(a), (36)

∂ℓ

∂wi
= (ŷ − y)σ′(a)zi, (37)

∂2ℓ

∂b2
= σ′(a)2 + (ŷ − y)σ′′(a), (38)

∂2ℓ

∂wi∂b
= σ′(a)2zi + (ŷ − y)σ′′(a)zi, (39)

∂2ℓ

∂wi∂wk
= σ′(a)2zizk + (ŷ − y)σ′′(a)zizk, (40)



Proof. To formulate the last layer of the neural network we define a as

a =
∑
i

wizi + b. (41)

Given a, if we assume the last layer activation function is σ(·), the single output can be written as

ŷ = σ(a). (42)

Now, if we denote the input data as (x, y) and associated output ŷ, and assume the loss function be

ℓ(x, y;θ) =
1

2
(ŷ − y)2. (43)

Having the loss function, we proceed to calculate the gradients and hessian of loss with respect to last layer parameters wi

and b. For the gradients, we write

∂ℓ

∂wi
=

∂L
∂ŷ

∂ŷ

∂a

∂a

∂wi
= (ŷ − y)σ′(a)zi, (44)

∂ℓ

∂b
=

∂L
∂ŷ

∂ŷ

∂a

∂a

∂b
= (ŷ − y)σ′(a). (45)

For the Hessian matrix, we only calculate the elements of the matrix that are only related to the last layer. More precisely,
we calculate ∂2L

∂wi∂wk
, ∂2L
∂wi∂b

, and ∂2L
∂b2 . For the ∂2L

∂wi∂wk
we can write

∂2ℓ

∂wi∂wk
=

∂

∂wk
((ŷ − y) · σ′(a)zi) =

∂(ŷ − y)

∂wk
· σ′(a)zi + (ŷ − y)

∂

∂wk
σ′(a)zi (46)

To calculate the above expression, we need ∂ŷ
∂wk

and ∂
∂wk

σ′(a).

∂ŷ

∂wk
=

∂ŷ

∂a

∂a

∂wk
= σ′(a)zk, (47)

∂

∂wk
σ′(a) =

∂

∂a
σ′(a)

∂a

∂wk
= σ′′(a)zk. (48)

Now, incorporating eq. 48 into 46 the elements of the last-layer Hessian matrix become:

∂2ℓ

∂wi∂wk
= σ′(a)2zizk + (ŷ − y)σ′′(a)zizk. (49)

For ∂2L
∂wi∂b

we can write

∂2ℓ

∂wi∂b
=

∂

∂b
((ŷ − y) · σ′(a)zi) =

∂(ŷ − y)

∂b
· σ′(a)zi + (ŷ − y)

∂

∂b
σ′(a)zi (50)

=
∂ŷ

∂a

∂a

∂b
· σ′(a)zi + (ŷ − y)

∂

∂a
σ′(a)

∂a

∂b
zi = σ′(a)2zi + (ŷ − y)σ′′(a)zi. (51)

Eventually, ∂2L
∂b2 is calculated as:

∂2ℓ

∂b2
=

∂

∂b
(ŷ − y) · σ′(a)) =

∂(ŷ − y)

∂b
· σ′(a) + (ŷ − y)

∂

∂b
σ′(a) (52)

=
∂ŷ

∂a

∂a

∂b
· σ′(a) + (ŷ − y)

∂

∂a
σ′(a)

∂a

∂b
= σ′(a)2 + (ŷ − y)σ′′(a). (53)

Eqs. 45, 49, 51, 53 show that matching Hessians and gradients with respect to the last layer parameters will match neural
network outputs, last layer input features and covariance between output features across domains. This supports the idea
of matching gradients and Hessians during training. The above result can be extended to multi-dimensional outputs if the
activation is element-wise.



C. Ablation Study

Table 7: Comparison of ERM, IRM, V-Rex, Fishr, and our proposed methods HGP and Hutchinson with ablation study on α
and β on Colored MNIST. The setting is same as the Colored MNIST experiment introduced in IRM (Arjovsky et al., 2019).

Method Train acc. Test acc.

ERM 86.4 ± 0.2 14.0 ± 0.7
IRM 71.0 ± 0.5 65.6 ± 1.8
V-REx 71.7 ± 1.5 67.2 ± 1.5
Fishr 71.0 ± 0.9 69.5 ± 1.0
HGP 71.0 ± 1.5 69.4 ± 1.3
HGP (α = 0) 70.6 ± 1.8 69.3 ± 1.2
HGP (β = 0) 78.9 ± 0.3 53.3 ± 1.7
Hutchinson 61.7 ± 1.9 74.0 ± 1.2
Hutchinson (α = 0) 70.6 ± 1.8 69.3 ± 1.2
Hutchinson (β = 0) 84.9 ± 0.1 9.8 ± 0.2

Table 8: Comparison of ERM, IRM, V-Rex, Fishr, and our proposed methods HGP and Hutchinson with ablation study on α
and β on imbalanced Colored MNIST where each domain has 95% from one class and 5% from other class. Except for the
imposed label shift, the setting is same as the Colored MNIST experiment introduced in IRM (Arjovsky et al., 2019).

Method Train acc. Test acc.

ERM 86.4 ± 0.1 16.7 ± 0.1
IRM 84.9 ± 0.1 14.3 ± 1.4
V-REx 83.3 ± 0.2 35.1 ± 1.2
Fishr 75.7 ± 2.7 35.5 ± 5.3
HGP 83.0 ± 0.2 30.0 ± 0.9
HGP (α = 0) 83.2 ± 0.4 29.7 ± 1.7
HGP (β = 0) 84.3 ± 0.1 20.4 ± 1.0
Hutchinson 79.4 ± 0.3 47.7 ± 1.4
Hutchinson (α = 0) 83.2 ± 0.4 29.7 ± 1.7
Hutchinson (β = 0) 84.9 ± 0.1 9.8 ± 0.2

We also repeat the Colored MNIST and imbalanced Colored MNIST experiments in scenarios where one of α and β
is non-zero, in Table 7 and Table 8. Recall that α controls the Hessian alignment and β controls the gradient alignment.
If not mentioned, the values for α and/or β are non-zero and they are chosen exactly as the IRM paper (Arjovsky et al.,
2019). According to Table 7, for both HGP and Hutchinson methods, gradient alignment seems to contribute more to OOD
generalization on CMNIST. This might be due to the heavy correlation shift and we have to align the local minima first. For
Hutchinson, when β = 0, the OOD performance drops which we believe is because the value that has been chosen for α is
optimized for the IRM loss. In other words, if we optimize α for aligning the diagonal part of Hessian, it can contribute to the
OOD generalization. For imbalanced Colored MNIST, the same trend for the role of α and β can be observed. Overall, the
key observation is that both aligning gradients and diagonal parts of Hessians contribute to the OOD generalization.

D. Domainbed Results for Other Model Section Methods
In this section, we provide the Domainbed results for the two other model selection methods, i.e., the training-domain
validation set and test-domain validation set (oracle). First note that the oracle model selection is not a valid benchmarking
scheme and not applicable in practice as it uses the target domain data for selecting the hyperparameters. In fact, in this
scenario, algorithms with more hyperparameters and training tricks (like warmup, exponential moving average and etc) can
obtain better performance since they have more freedom to tune the model on test data. Considering this, we should not rely
on the oracle model selection technique to compare domain generalization algorithms. The other model selection technique is



the training-domain validation set where the validation sets of all training domain are concatenated together and select the
hyperparameters that maximize the accuracy on the entire validation set.

As can be seen in Table 9 and Table 10, although Hessian alignment methods are not the best, their performance across all
datasets is still competitive for other model selections. As also shown in Gulrajani and Lopez-Paz (2020), different model
selections could result in different rankings of the algorithms. We find that training-domain model selection in general gives
better results for most baseline algorithms, but the performance of the Hutchinson method slightly degrades. We defer the
study of comparing model selections to future work.

Table 9: DomainBed benchmark with training-domain validation set model selection method for CMNIST, VLCS, PACS, and
OfficeHome datasets. We show the best and second best number with boldface and underline respectively.

Algorithm VLCS PACS OfficeHome DomainNet Avg

ERM 77.5 85.5 66.5 40.9 67.6
IRM 78.5 83.5 64.3 33.9 65.1
GroupDRO 76.7 84.4 66.0 33.3 65.1
Mixup 77.4 84.6 68.1 39.2 67.3
MLDG 77.2 84.9 66.8 41.2 67.5
CORAL 78.8 86.2 68.7 41.5 68.8
MMD 77.5 84.6 66.3 23.4 63.0
DANN 78.6 83.6 65.9 38.3 66.6
CDANN 77.5 82.6 65.8 38.3 66.1
MTL 77.2 84.6 66.4 40.6 67.2
SagNet 77.8 86.3 68.1 40.3 68.1
ARM 77.6 85.1 64.8 35.5 65.8
VREx 78.3 84.9 66.4 33.6 65.8
RSC 77.1 85.2 65.5 38.9 66.7
AND-mask 78.1 84.4 65.5 37.2 66.3
SAND-mask 77.4 84.6 65.8 32.1 65.0
Fish 77.8 85.5 68.6 42.7 68.7
Fishr 77.8 85.8 67.8 41.7 68.3

HGP 77.6 84.7 68.2 41.1 67.9
Hutchinson 76.8 83.9 68.2 41.6 67.6



Table 10: DomainBed benchmark with test-domain validation set (oracle) model selection method for CMNIST, VLCS, PACS,
and OfficeHome datasets. We show the best and second best number with boldface and underline respectively.

Algorithm VLCS PACS OfficeHome DomainNet Avg

ERM 77.6 86.7 66.4 41.3 68.0
IRM 76.9 84.5 63.0 28.0 63.1
GroupDRO 77.4 87.1 66.2 33.4 66.0
Mixup 78.1 86.8 68.0 39.6 68.1
MLDG 77.5 86.8 66.6 41.6 68.1
CORAL 77.7 87.1 68.4 41.8 68.8
MMD 77.9 87.2 66.2 23.5 63.7
DANN 79.7 85.2 65.3 38.3 67.1
CDANN 79.9 85.8 65.3 38.5 67.4
MTL 77.7 86.7 66.5 40.8 67.9
SagNet 77.6 86.4 67.5 40.8 68.1
ARM 77.8 85.8 64.8 36.0 66.1
VREx 78.1 87.2 65.7 30.1 65.3
RSC 77.8 86.2 66.5 38.9 67.4
AND-mask 76.4 86.4 66.1 37.9 66.7
SAND-mask 76.2 85.9 65.9 32.2 65.1
Fish 77.8 85.8 66.0 42.7 68.1
Fishr 78.2 86.9 68.2 43.4 69.2

HGP 77.3 86.5 67.4 41.2 68.1
Hutchinson 77.9 86.3 68.4 41.9 68.6


