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1. Dataset Details
We conduct our experiments on DomainNet [6], OfficeHome [11] and VISDA2017 [7] datasets. For all our experiments

we follow the protocol explained in [9].
DomainNet [6]. DomainNet is a large scale UDA benchmark for image classification task. The original DomainNet

contains 0.6 million images, 6 domains and 345 classes. However, due to labeling noise, most recent work [8, 9] has adopted a
cleaned version containing 40 commonly seen classes from 4 domains. We use this cleaned version of the DomainNet dataset
for our experiments as in [8]. VISDA2017 [7].VISDA2017 is a large scale dataset with the domain transfer synthetic→ real.
The dataset contains 12 classes and over 200K images. OfficeHome [11]. The OfficeHome dataset comprises 12 domain
shifts, with each shift containing 65 classes observed in both home and office settings from 4 domains.

2. Scalability of SCAL+SCON to CNNs
While our proposed self-training method is entirely centered around ViT backbone, the SCAL+SCON modules are appli-

cable to the CNN architecture (i.e., ResNet50 [3]). In Table 1, we compare the performance when energy alignment and our
normalization modules are used for distribution alignment. For this comparison, we use results for PADA [1] and DANN [2]
reported in SENTRY [8]. Note, as in the case of SENTRY we compute the per-class-mean-accuracy as the evaluation metric.
It can be seen that our method outperforms the considered adversarial methods.

3. Summary of Training Hyper-parameters
Optimizer parameters. We use AdamW [5] optimizer with a fixed learning rate of 2×10−4 with a mini-batch size of 512.
For all OfficeHome [11] and DomainNet [6] we report results after 300 epochs of training. For VISDA2017 experiments, we
report results after 20 epochs.

SEEBS+ parameters. We keep the loss weights, αu = αea = αn = 0.1 constant for all experiments (see Overall training
loss provided in the main text). We find the normalizer module parameter λ = 0.01 (see equation (15) of the main text)
works best for DomainNet and OfficeHome experiments. For all other experiments we use λ = 0.1. In Fig. 1 we provide a

Method Re2Cl Cl2Pa Pa2Re Sk2Re

Source 65.8 60.6 84.5 77.1
PADA [1] 65.9 53.1 79.8 76.5
DANN [2] 63.4 65.7 86.9 85.7

SCON+SCAL 78.0 73.8 89.7 87.6

Table 1. SCAL/SCON modules for CNNs. Here, we compare the effectiveness of our proposed SCAL/SCON modules against other
distribution alignment methods in CNN architecture.
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Figure 1. Sensitivity of the proposed SEEBS+ method to the free-energy normalization weight λ see equation (15) of the main text. Here,
we report the sensitivity analysis on two domain sets per each DomainNet (Left) and OfficeHome (Right) datasets.

Dataset
SOTA

(i.e., PACMAC [9]) Ours
Relative
Imp.%

OfficeHome 66.3 68.5 +3.3
DomainNet 81.5 83.3 +2.2
VISDA2017 77.1 79.5 +3.1

Table 2. Overall improvement from state-of-the-art UDA methods.

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr

0.09 1.11 0.09 0.35 0.16 0.23 0.36 0.09 0.46 0.17 0.14 0.46

Re2Cl Re2Pa Re2Sk Cl2Re Cl2Pa Cl2Sk Pa2Re Pa2Cl Pa2Sk Sk2Re Sk2Cl SkPa

0.49 0.31 0.72 0.77 0.27 0.31 0.41 0.48 0.23 0.34 0.41 0.40

Table 3. Standard deviation of top-1 accuracy for SEEBS+ on three different runs with different random seeds.

sensitivity analysis on the free-energy normalization weight, λ. Here, we report the sensitivity analysis on two domain sets
from DomainNet (Left) and OfficeHome (Right) datasets.

4. Overall Improvement
In Table 2, we report the relative improvement from our method compared to state-of-the-art UDA methods. As such,

we compare with PACMAC [9]. We observe that our proposed method SEEBS+ achieves a significant 2.2% - 3.3% relative
improvement in comparison to PACMAC.

In Table 3, we report the standard deviation of the top-1 accuracy for the proposed SEEBS+ for OfficeHome [11] (top
row) and DomainNet [6] (bottom row), based on three separate runs with different random seeds. In almost all cases, the
standard deviation is less than 1.0, with the exception of the Ar2Pr set in OfficeHome. However, it is worth noting that we
outperform state-of-the-art methods in the Ar2Pr domain set by a margin of 2.5 in top-1 accuracy. Therefore, we claim that
SEEBS+ is a method with consistent improvements over state-of-the-art UDA methods.

5. Quality of Instance Selections
In Fig. 2 we show the number of instances used for self-training as a proportion of the batch-size for each iteration. It

can be seen that SEEBS+ outperforms PACMAC (see Table 2 of the main text) while using a significantly lower number of
training instances for self-training. We attribute this observation to the better quality instance selections from SEEBS+.

To quantitatively evaluate the quality of instance selections, we compute the precision of our instance selections. More
specifically, we compare them to ground truth instance selections where pseudo-labels are correct.



Ar2Cl Pr2Ar Rw2Ar

Figure 2. Here we compare the proportion and the quality of instance selections for PACMAC and SEEBS+. SEEBS+ outperform PAC-
MAC [9] even with a significantly less number of instance selections (see Table 2 of the main text). We attribute this to the better quality
of instance selections as shown by the precision plots.

Our analysis shows that, for a significant portion of the training, our proposed method, SEEBS+, exhibits better precision
in instance selection than PACMAC. This is particularly evident in the early stages of training. This is important since a noisy
self-training signal in the initial stages may cause the model to converge to an unfavorable local optimum. Previous research
has emphasized the importance of steady self-training on the target domain during the early iterations of UDA. For instance,
Dirt-t [10] proposes a constrained optimization technique for better self-supervision during early iterations. In our case, we
improve the self-training by making reliable instance selections for the self-training objective.

6. Expanded Ablation Tables
Here, we present the expanded versions of the ablation experiments originally discussed in the main paper. In Table 4

we report the full domain set results demonstrating the significance of using the Joint. distribution-based instance sampling
method.

In Table 5 we present an extended ablation experiment on the instance selection approach. This experiment serves to
validate our instance selection approach explained in equation (4) of the main text.

In Table 6 we report the expanded set of experiments showing the significance of the SCON module when used for
free-energy alignment (i.e., SCAL + SCON).

In Table 7 we provide a comparison of the case when a naive normalization (i.e., BatchNorm [4]) is used instead of the
proposed SCON module. As per the expanded ablation tables, our choices proposed in this paper can be seen to perform
better in a majority of domain sets.



Re2Cl Re2Pa Re2Sk Cl2Re Cl2Pa Cl2Sk Pa2Re Pa2Cl Pa2Sk Sk2Re Sk2Cl Sk2Pa AVG

Cond. 87.8 82.7 77.7 78.7 73.6 76.1 88.2 83.5 77.8 83.6 82.6 78.6 80.9
Marg. 86.5 82.1 77.2 85.0 73.3 73.9 88.2 81.0 76.3 84.3 82.4 78.9 80.7
Joint. 87.1 82.9 78.3 85.5 75.5 76.6 87.8 82.7 78.1 82.5 82.7 78.0 81.5

Ar2Cl Ar2Pa Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr AVG

Cond. 60.4 64.7 74.6 60.5 69.1 66.7 56.7 58.5 74.2 70.6 63.8 81.3 66.8
Marg. 58.3 65.0 73.9 58.9 68.0 66.7 56.4 57.4 72.9 70.1 63.9 81.7 66.1
Joint. 61.3 65.2 74.0 60.4 69.6 67.3 57.2 59.1 73.9 70.9 64.7 82.0 67.1

Table 4. Expanded version of our analysis on self-training instance selection methods following conditional, marginal, and joint distribu-
tions.

Re2Cl Re2Pa Re2Sk Cl2Re Cl2Pa Cl2Sk Pa2Re Pa2Cl Pa2Sk Sk2Re Sk2Cl Sk2Pa AVG
Sel-high 86.8 81.6 77.6 86.2 73.9 75.8 87.5 81.9 77.9 83.8 82.1 77.7 81.1
Sel-low 86.5 82.1 77.2 85.0 73.3 73.9 88.2 81.0 76.3 84.3 82.4 78.9 80.7
Joint-sel-high 86.3 82.3 77.7 77.4 72.0 75.2 87.9 80.0 78.3 84.2 82.1 77.5 80.1
Joint-sel-low 87.1 82.9 78.3 85.5 75.5 76.6 87.8 82.7 78.1 82.5 82.7 78.0 81.5

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr AVG
Sel-high 59.8 66.3 73.4 59.3 68.1 66.1 56.4 58.4 72.9 70.0 64.2 81.8 66.4
Sel-low 58.3 65.0 74.1 59.3 68.0 66.7 56.4 57.4 72.9 70.1 63.9 81.7 66.1
Joint-sel-high 59.3 66.6 73.9 58.8 68.7 66.4 56.4 58.7 73.7 70.3 64.2 81.8 66.6
Joint-sel-low 61.3 65.2 74.0 60.4 69.6 67.3 57.2 59.1 73.9 70.9 64.7 82.0 67.1

Table 5. Expanded version of our analysis on the impact of using instances that meet the proposed free-energy based instance selection
condition.

Re2Cl Re2Pa Re2Sk Cl2Re Cl2Pa Cl2Sk Pa2Re Pa2Cl Pa2Sk Sk2Re Sk2Cl Sk2Pa AVG
Source 71.0 77.6 62.9 73.7 61.5 63.3 82.4 63.1 66.1 76.6 71.9 69.6 70.1
OnlySCAL 82.7 79.1 74.1 79.9 69.3 72.2 83.2 78.3 75.5 80.0 78.5 73.4 77.2
OnlySCON 65.3 46.3 42.7 44.0 30.7 41.1 52.2 51.6 43.6 42.4 58.1 38.4 46.4
SCAL+SCON 88.6 81.7 80.5 86.0 79.1 76.8 86.9 80.8 79.0 84.1 82.7 79.0 82.1

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr AVG
Source 46.7 57.6 71.0 51.1 60.0 62.6 51.4 46.9 70.5 66.3 52.2 77.2 59.4
OnlySCAL 55.3 60.4 73.2 57.4 65.9 64.2 52.5 56.7 66.3 67.9 58.9 79.9 63.2
OnlySCON 51.3 55.6 69.8 39.5 44.1 40.1 44.3 36.9 50.7 64.9 48.1 65.4 50.9
SCAL+SCON 60.5 67.7 74.9 62.1 68.8 68.0 60.9 60.2 75.4 71.5 66.9 81.9 68.2

Table 6. Expanded version of the evaluation of the effects of the SCAL and SCON. Our results indicate that incorporating the normalization
process, SCON, results in significant improvements.

Re2Cl Re2Pa Re2Sk Cl2Re Cl2Pa Cl2Sk Pa2Re Pa2Cl Pa2Sk Sk2Re Sk2Cl Sk2Pa AVG
naiveSEEBS+ 86.6 81.8 78.8 85.9 72.9 77.0 87.5 81.9 78.4 86.1 83.5 76.0 81.4
SEEBS+ 90.0 83.8 80.2 87.2 79.3 78.3 88.1 83.9 79.8 84.6 84.5 80.6 83.3

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr AVG
naiveSEEBS+ 61.0 66.0 74.6 62.4 71.6 69.0 58.6 59.4 74.8 70.8 66.1 81.7 68.0
SEEBS+ 60.9 68.1 75.3 62.1 68.7 68.1 60.6 60.0 75.7 72.2 68.2 82.0 68.5

Table 7. Expanded version of the reported comparisons on the effect of applying a BatchNorm instead of SCON.
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