
Delta Denoising Score – Supplementary Materials

Amir Hertz1,2 Kfir Aberman1 Daniel Cohen-Or1,2

1Google Research 2Tel Aviv University

A. Societal Impact
Our method introduces an unsupervised editing frame-

work for images. Our framework might be exploited for
producing fake content, however, this is a known problem,
common to all image editing techniques. Moreover, our
method relies on generative priors of a large text-to-image
diffusion models that might contain undesired biases due to
the auto-filtered enormous dataset that they were trained on.
Those undesired biases could infiltrate to our editing results
thorough our optimization process or our distilled networks.
However, we believe that our DDS optimization technique
can help in the future to reveal such undesired biases and
editing directions, similarly to the way it operates today to
clean noisy undesired components within editing directions.

B. Implementation Details
Zero-shot DDS optimization Unless specified otherwise,
in all of our zero shot experiments, we initialize the latent
image z by the reference latent image ẑ and apply our DDS
optimization for 200 iterations (∼ 18 seconds on a single
A100 GPU) using SGD with learning rate of 2 and applying
learning rate decay of 0.9 in intervals of 20 iteration.

Image-to-image network training Our image-to-image
networks were trained using a batch size of 2 for 125000
iterations (∼ 23 hours on a single A100 GPU). We use the
Adam optimizer with a learning rate of 10−5 and learning
rate warmup over 10000 iterations using a linear scheduler.
For the DDS, we set the classifier-free guidance scale (CFG)
to 25 using CFG warmup starting from 1 over 20000 itera-
tions using a cosine scheduler. For the identity regulariza-
tion, we start with λid = 3 and cool it down to 0.1 over
20000 iterations using a cosine scheduler.

C. Additional Ablations
Number of optimization steps We set the number of op-
timization steps to 200, as we found it sufficient for most de-
sired edits. However, for obtaining large structural changes

or color modifications, the number of optimization steps
should be increased. See example in Figure 2 where struc-
tural modification, of replacing a flamingo to an elephant
requires 400 steps, while modify the flamingo to a bronze
sculpture converges faster. Notice that in some cases, where
we seemingly request for a large modification, like replac-
ing the flamingo to a giraffe, 200 optimization are still suf-
ficient since the overall structure of the giraffe is similar to
that of the flamingo.

Optimizer Selection We tested our DDS optimization us-
ing both SGD and Adam [4] optimizer and found that us-
ing vanilla SGD leads to higher quality results. Figure 3
compares the two alternatives (top rows) with respect to
the baseline SDS with SGD optimization (bottom row). We
can clearly see that both DDS optimization achieve higher
quality results compared to the baseline. However, by look-
ing at the accumulated difference of the image during the
optimization (right saliency map beneath each image), we
can see that the Adam based optimization results with more
changes and artifacts that are not related to editing prompt.
The reason for the change in the quality can be explained
through the adaptive nature of Adam. For simplicity, con-
sider the simpler update rule of Adagrad [2]:

θt ← θt−1 − γ
gt√∑t
i=1 g

2
t

,

where t enumerates the optimization steps, gt is the gradi-
ent of θ calculated at step t and γ is the optimization learn-
ing rate. We can see that the normalization to the gradients
may magnify outlier gradients or reduce the weight of good
gradients. Figure 3 visualize such update to the pixels for
different steps across the optimization (left saliency map be-
neath each image). It can be seen that the Adam based op-
timization (middle row) leads to a uniform update across
the pixels compared to SGD (top row), where most of the
energy is located at the pixels that are relevant to the edit.

Regularized SDS optimization An alternative to our
DDS approach is to use the SDS with additional regulariza-

tion that prevents large changes in the edited image z with
respect to the input ẑ. The simplest choice is to add regu-
larise the optimization with a weighted L2 loss between z
and ẑ. In this setting, the gradient of z is given by:

∇z = ∇zSDS + λid (z− ẑ) ,

Where λid is the weight for the regularisation L2 loss. Fig-
ure 4 shows the results of regularized SDS optimizations
using increasing weight for the regularization term. As ex-
pected, increasing the value of λid harms the fidelity to the
edit prompt, while the blurriness side-effect of SDS cannot
be avoided.

Effect of CFG on the similarity between δbias and δ̂bias
We state that DDS guides the direction towards δtext if
δbias ≈ δ̂bias which we validate empirically using a fixed
CFG ω = 7.5, a typical CFG value used in T2I generation
and editing. However, it can be easily seen by the definition
of CFG that any error is scaled by ω, which we validate by
repeating the experiment of Fig. 8 (right). See the results in
Fig. 1.

0 200 400 600 800 1000

0.6

0.7

0.8

0.9

1.0 cfg=1

cfg=10

cfg=20

cfg=30

cfg=40

cfg=50

Timestep t

D
D

S
C

os
in

e

Figure 1: Cosine similarity between the SDS directions (Eq.
4) using increasing values of classifier free guidance (CFG)
scale.

D. Additional Results
Zero-shot image editing results on real images Addi-
tional image editing results using DDS optimization are
shown in Figures 5 and 6. All results applied on real im-
ages from COCO, and Unsplash datasets [1, 6]. Notice that
our method works with simple input prompts describing the
edit we want to apply to the image. We use a reference text
ŷ only in cases where we want to apply the edit over a spe-
cific object. Otherwise, we set ŷ to the embedding of the
null text.

Image-to-image networks results Additional results are
shown in Figures 7, 8 and 9. The first network was trained
to change the material of a sofa in an input image. The
network was trained on a synthetic dataset containing 5000
images of living rooms. An additional network was trained
to synthesize different flowers in images of potted plants.
The network was trained on a synthetic dataset containing
5000 of potted plants in living rooms, kitchens, in gardens,
and in city streets. Finlay, we train different networks to

modify a person in an input image to other characters. Syn-
thesizing images of persons using Stable Diffusion usually
results in poor results. Therefore we train our character net-
works over FFHQ in-the-wild dataset (unaligned) [3]. Dur-
ing training, we set a single pair of fixed prompts for the
DDS optimization, “A photo of a person.” for the embed-
ding ŷ, and for the target embedding y, we replace the word
“person” with one of the characters: a Claymation charac-
ter, A sculpture, a 3D Pixar character and to a zombie. All
results are shown over images from ILSVRC [5] and COCO
[1] datasets.

References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In Computer vision
and pattern recognition (CVPR), 2018 IEEE conference on.
IEEE, 2018. 2, 8, 9, 10

[2] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgra-
dient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(61):2121–2159,
2011. 1

[3] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4401–4410, 2019. 2, 10

[4] Diederik P Kingma, J Adam Ba, and J Adam. A method
for stochastic optimization. arxiv 2014. arXiv preprint
arXiv:1412.6980, 106, 2020. 1

[5] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 2, 8, 9

[6] Unsplash. Unsplash image collection, 2022. 2

Input 100 200 300 400

Optimization steps

“A flamingo roller skating in the city.” “A bronze statue of a flamingo roller skating in the city.”

“A flamingo roller skating in the city.” “A giraffe roller skating in the city.”

“A flamingo roller skating in the city.” “An elephant roller skating in the city.”

Figure 2: DDS Optimization convergence. Some challenging edits, such as changing a flamingo to an elephant, may require
more time to converge compared to other edits. In most cases, we have found that 200 steps are sufficient.

Optimization steps

D
D

S
—

 S
G

D
D

D
S

—
 A

da
m

SD
S

In
pu

t

10 25 40 55 70 85 100

“A cat riding on a bicycle.” “A koala riding on a bicycle.”

∆z
∑

∆z

Figure 3: Optimizer selection. Each row shows a zero-shot editing optimization sequence using different settings. The
green-to-red heatmaps (left map beneath each image) show the norm of the latent pixels update in a specific step. The blue-
to-red heatmaps (right map) show the accumulated difference norm with respect to input image (top).

Optimization steps

In
pu

t

10 25 40 55 70 85 100

“A cat riding on a bicycle.” “A koala riding on a bicycle.”

λ
id
=

0
1

2
5

10

Figure 4: Regularized SDS optimization as a baseline. We combined a vanilla SDS optimization with a weighted L2 loss
between the optimized image and the input image (top). From top row to bottom: we use a larger weight (λid) for the L2 loss.
As can be seen, by modifying λid we can trade off between fidelity to the text prompt and fidelity to the input image.

Optimization steps

“Waterfall” “Frozen waterfall.”

“ ” “Snowing.”

“House.” “Igloo.”

“House.” “A house made of candies.”

“ ” “Sunset.”

“ ” “Rainbow at background”

Figure 5: Zero-shot image editing using DDS optimization on real images. Using DDS, we can apply a variety of edits
over real images using simple input prompt descriptions (like “house”, or even an empty prompt). The editing operations are
mask free and may contain global descriptions, for example, changing the lighting in the image, or local descriptions, such
as changing a house to an igloo.

Optimization steps

“ ” “Plates with pizza.”

“Coffee. ” “Matcha drink.”

“Bicycle.” “Vespa.”

“Bicycle.” “Neon BMX bicycle.”

“ ” “Drawing of dinosaur on the coffe.”

“ ” “Plates with sushi.”

Figure 6: Zero-shot image editing using DDS optimization on real images. Using DDS, we can apply a variety of edits
over images using simple input prompt descriptions (like “Coffee”, or even an empty prompt). The editing operations are
mask free and may contain structural changes, for example, changing a bicycle to a Vespa, or stylistic changes, such as
changing coffee to a matcha drink.

Input Black leather Brown leather Purple velvet Yellow velvet

Figure 7: Unsupervised multi-task image-to-image translation– sofas network results. The network was trained to
change the color and material of the sofa in the input image. The network was trained on synthetic images of living rooms
and tested on real living rooms images from ILSVRC [5] and COCO [1] validation sets.

Input

Input

Tulips Roses Daisies Dahilas

v

Figure 8: Unsupervised multi-task image-to-image translation– flowers network results. The network was trained to
change to add different flowers potted plant in the input image. The network was trained on synthetic images and tested on
real images of flowerpots [5] and potted plant [1].

Input Claymation Sculpture Pixar Zombie

Figure 9: Unsupervised image-to-image translation– characters. Different networks were trained to change the person
in the image to various characters. The networks were trained on FFHQ in-the-wild dataset (unaligned) [3] and tested on
images from COCO dataset [1].

