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A. Overview
This appendix provides additional information, frame-

work results (Tab. 2), qualitative results (Figs. 7 and 8), and
experimental details for reproducibility purposes, which
could not be included in the main text due to space limi-
tations.

B. Interface Functions
Our proposed interface functions have to be instantiated

individually for each explanation type. In our evaluation,
we examine four explanation types:

1. Attribution maps, i.e., Input×Gradient [51], (absolute)
Integrated Gradients [54], Grad-CAM [48], RISE [40],
X -DNN [25], BagNet [6], B-cos networks [8], and
Chefer LRP [10].

2. Attention from vision transformers [16], i.e., Roll-
out [1].

3. Binary importance maps that indicate if a pixel is im-
portant or not, i.e., LIME [43].

4. Prototypes that allow for explanations of the type “this
looks like that,” i.e., ProtoPNet [11].

In the following, we will outline how interface functions for
these explanation types are instantiated:

Attribution maps:

PI(·) – The part importance is estimated by summing the
pixelwise attribution scores within each part, where the
part mask is dilated with a small square kernel of size
5× 5 to also include the part’s edges.

P(·) – A part is considered to be important if its part impor-
tance is more than t% of the total attribution sum of
the explanation. For a description of how t is chosen,
please refer to Sec. 4.1.2 of the main paper.

Figure 6. Example models of the neutral body (bottom left) and
our dataset concepts (i.e., parts) beak, wings, feet, eyes, and tail.

Attention:

PI(·) – The part importance is estimated by summing the
pixelwise attribution scores within each part, where the
part mask is dilated with a small square kernel of size
5 × 5 to also include the part’s edges. Since attention
rollout [1] cannot be computed w.r.t. a particular tar-
get class [10], the target sensitivity protocol cannot be
computed.

P(·) – A part is considered to be important if its part impor-
tance is more than t% of the total attribution sum of
the explanation.

Binary importance maps:

PI(·) – The part importance is not defined for this explana-
tion type.

P(·) – A part is considered to be important if t% of its pixels
are estimated to be important by the explanation.

Prototypes:

PI(·) – The importance score within the bounding box of a
single prototype is the product of its similarity score



and its class connection score. The importance score
outside of the bounding box is zero. The final part
importance is estimated by summing the importance
scores of each prototype belonging to the class of in-
terest.

P(·) – A part is considered to be important if t% of its pixels
overlap with the explanation’s bounding boxes.

Qualitative results for P(·) can be seen in Fig. 9.

C. Evaluation Details
C.1. Accuracy and background independence

In the main paper, we describe the accuracy (A) and
background independence (BI) metrics only textually. We
here provide the accompanying formulas. The notation fol-
lows that of Sec. 4.1 in the main paper.

The accuracy A denotes the standard classification accu-
racy:

A =
1

N

N∑
n=1

[
f(xn) = cn

]
, (1)

with [·] denoting the Iverson bracket [29].
The background independence BI denotes the ratio of

background objects that, when removed, cause the model
output to drop less than 5%:

BI =
1

NB

N∑
n=1

[
|0.05f(xn)| > f(xn)− {f(x′′′′

n )}
]
, (2)

with B denoting the average number of background objects
per image, and {f(x′′′′

n )} the target scores of the images ob-
tained by removing any individual background object from
image xn.

C.2. Other dimensions of evaluation

In our FunnyBirds framework, we analyze the explain-
ability dimensions completeness, correctness, and con-
trastivity. With our custom evaluations we evaluate the
coherence of methods. Nauta et al. [35] propose various
additional dimensions for evaluating XAI that have been
studied in related work but are not considered in our pa-
per. We here describe the reasons for not including these
dimensions; please refer to [35] for a definition of each di-
mension:

Consistency. Consistency received only minor attention in
related work.

Continuity. Continuity received only moderate attention in
related work. Additionally, we believe that the con-
tinuity of an explanation is usually strongly tied to
the continuity of the model. Nevertheless, continuity

could be included in our framework by measuring the
part importance differences for two similar input im-
ages, e.g., two images with slight viewpoint or illumi-
nation changes. We leave this for future work.

Compactness. We believe that there is a discrepancy be-
tween the automatically measurable size of an expla-
nation and the size of an explanation that is perceived
by a human. For example, an attribution map contains
a lot of information (in the sense of memory size, e.g.,
in MiB) that, however, is much easier for a human to
parse than, e.g., a complex mathematical function that
requires only little memory to store. For this reason,
we do not believe that compactness of different expla-
nation types can be sufficiently evaluated without a hu-
man in the loop.

Covariate complexity. Covariate complexity received
only moderate attention in related work. Additionally,
just as compactness, it is strongly related to a human
assessment, and thus, not qualified for our fully auto-
matic framework. However, one could develop custom
evaluations that measure the covariate complexity of
specific methods.

Composition. Composition received only minor attention
in related work.

Confidence. Confidence received only minor attention in
related work.

Context. Context received only minor attention in related
work.

Controllability. Controllability received only minor atten-
tion in related work.

D. Experimental Details
All examined models are initialized with weights ob-

tained by pre-training on ImageNet [70]. If not specified
otherwise, we use the hyper-parameters from the original
implementation of each respective model. To ensure that
test images with removed parts are from the same distribu-
tion as the training data, we augment half of our training
set by randomly removing n ∈ {0, . . . , 5} bird parts from
each image. Since these images can no longer be distinctly
associated with one specific class, we utilize a multi-label
classification training scheme, where we compute the aver-
age cross-entropy loss for all potential targets, i.e., all the
classes that contain all the remaining parts. For training, we
use a single NVIDIA A100-SXM4-40GB GPU. We train
each model twice and select the run with the higher test set
accuracy for our evaluation.
ResNet-50. To train ResNet-50 [22], we use a batch size
of 64 and an SGD optimizer with a weight-decay of 1e−4,



Table 2. Quantitative results of our FunnyBirds evaluation protocols. See Sec. 4.1 of the main paper for a description of the evaluation
metrics. We additionally report the final scores for each respective explainability dimension completeness (Com.), correctness (Cor.), and
contrastivity (Con.). The mean explainability score (mX) denotes the mean of the final completeness, correctness, and contrastivity scores.
Note that A (Acc.), BI (B.I.), Com., Cor., Con., and mX are also included in Fig. 3 of the main paper. * denotes slight architectural changes.

Backbone XAI Method A BI CSDC PC DC D SD TS Com. Cor. Con. mX

VGG16 [53] IG [54] 0.99 0.99 0.92 0.92 0.92 0.97 0.67 0.92 0.95 0.67 0.92 0.85
VGG16 [53] IG abs. [54] 0.99 0.99 0.96 0.99 0.97 0.97 0.69 0.84 0.97 0.69 0.84 0.83
VGG16 [53] RISE [40] 0.99 0.99 0.8 0.73 0.7 0.84 0.73 0.83 0.79 0.73 0.83 0.78
VGG16 [53] LIME [43] 0.99 0.99 0.89 0.88 0.9 0.92 0 0 0.91 0 0 0.3
VGG16 [53] IxG [51] 0.99 0.99 0.79 0.71 0.69 0.94 0.55 0.69 0.84 0.55 0.69 0.69
VGG16 [53] Grad-CAM [48] 0.99 0.99 0.94 0.97 0.93 0.87 0.75 0.93 0.91 0.75 0.93 0.86

ResNet-50 [22] IG [54] 1 1 0.92 0.94 0.88 0.81 0.59 0.98 0.86 0.59 0.98 0.81
ResNet-50 [22] IG abs. [54] 1 1 0.95 0.97 0.91 0.79 0.53 0.86 0.87 0.53 0.86 0.75
ResNet-50 [22] RISE [40] 1 1 0.82 0.75 0.74 0.63 0.56 0.61 0.7 0.56 0.61 0.62
ResNet-50 [22] LIME [43] 1 1 0.94 0.94 0.92 0.78 0 0 0.86 0 0 0.29
ResNet-50 [22] IxG [51] 1 1 0.74 0.61 0.53 0.54 0.54 0.8 0.58 0.54 0.8 0.64
ResNet-50 [22] Grad-CAM [48] 1 1 0.8 0.74 0.69 0.74 0.55 0.78 0.74 0.55 0.78 0.69

ViT-B/16 [16] IG [54] 0.98 1 0.89 0.86 0.85 0.9 0.65 0.91 0.88 0.65 0.91 0.82
ViT-B/16 [16] IG abs. [54] 0.98 1 0.96 0.98 0.95 0.89 0.63 0.74 0.92 0.63 0.74 0.76
ViT-B/16 [16] RISE [40] 0.98 1 0.79 0.71 0.7 0.83 0.79 0.75 0.78 0.79 0.75 0.77
ViT-B/16 [16] LIME [43] 0.98 1 0.95 0.96 0.96 0.85 0 0 0.9 0 0 0.3
ViT-B/16 [16] IxG [51] 0.98 1 0.74 0.59 0.6 0.43 0.51 0.67 0.54 0.51 0.67 0.57
ViT-B/16 [16] Grad-CAM [48, 10] 0.98 1 0.75 0.67 0.68 0.91 0.7 0.48 0.81 0.7 0.48 0.66
ViT-B/16 [16] Rollout [1] 0.98 1 0.86 0.8 0.82 0.8 0.76 0 0.81 0.76 0 0.52
ViT-B/16 [16] Chefer LRP [10] 0.98 1 0.91 0.92 0.89 0.9 0.74 0.95 0.9 0.74 0.95 0.86

BagNet [6] BagNet [6] 1 1 0.95 0.98 0.91 0.91 0.76 0.99 0.93 0.76 0.99 0.9
ResNet-50* [22] B-cos network [8] 0.96 0.87 0.93 0.88 0.94 0.86 0.69 0.89 0.89 0.69 0.89 0.82
ResNet-50* [22] X -DNN [25] 0.99 1 0.9 0.88 0.85 0.93 0.6 0.87 0.91 0.6 0.87 0.79
ResNet-50 [22] ProtoPNet [11] 0.94 1 0.93 0.91 0.92 0.58 0.24 0.46 0.75 0.24 0.46 0.48

a momentum of 0.9, and a learning rate of 0.1; we train for
120 epochs with a learning rate scheduler that multiplies the
initial learning rate with a factor of 0.1 after 60 epochs.
VGG16. To train the VGG16 [53] model, we use the same
training setup as for the ResNet-50 model with an initial
learning rate of 0.001.
ViT-B/16. To train the ViT-B/16 [16] model, we use the
same training setup as for the ResNet-50 model with an ini-
tial learning rate of 0.01.
X -DNN. To train the X -DNN [25] model, we use the same
training setup as for the ResNet-50 model with an initial
learning rate of 0.01.
BagNet. To train the BagNet [6] model, we use the same
training setup as for the ResNet-50 model with an initial
learning rate of 0.01. Our instantiation of BagNet uses a
receptive field of 33× 33.
B-cos network. To train the B-cos network [8], we use
the same training setup as for the ResNet-50 model with an
initial learning rate of 0.01. As recommended in the orig-
inal paper [8], we use a binary cross-entropy loss, and we
concatenate the input x′ with its complement, giving us the
final input x = [x′, 1− x′].

ProtoPNet. To train ProtoPNet [11], we use the same
hyper-parameters as in the original paper, i.e., a batch size
of 80, a learning rate of 1e−4 for the features and 3e−3
for the add-on layers and prototype vectors, 100 training
epochs, and a learning rate decay factor of 0.1 after every 5
epochs.

D.1. Dataset generation

Our proposed dataset consists of rendered 3D scenes, as
shown in Fig. 8. The required bird parts are manually mod-
eled using Blender.1 To render the scenes we use Three.js,
a JavaScript 3D Library.2 For our proposed toon shading,
we use MeshToonMaterial.3 In order to add shadows and
achieve a 3D effect, we add a point light source to the scene.
We empirically validated that an image with all bird parts
removed cannot be classified beyond random guessing, to
ensure that the background contains no class-specific infor-
mation.

1blender.org
2threejs.org
3threejs.org – MeshToonMaterial

http://www.blender.org/
http://www.threejs.org/
https://threejs.org/docs/#api/en/materials/MeshToonMaterial


D.2. Stability across runs

To measure the stability of our FunnyBirds framework
across runs, we report the absolute difference of two runs
in Tab. 3. We report results for two setups: (1) the abso-
lute difference between the evaluation on two training runs
(i.e., trained with differing random seeds) and (2) the ab-
solute difference between evaluating the respective model
from the main paper on the original test set (500 samples)
and a larger test set with 2 500 samples. This allows us
to measure the stability across different training runs and
across different test set sizes. The absolute difference be-
tween different training runs is fairly small (≤ 0.039 for
mX, see Tab. 3). CNN-based architectures appear to be
more stable than the vision transformer. Also, the abso-
lute difference of the explainability protocols across runs is
somewhat correlated with the absolute difference of the ac-
curacy across runs. This suggests that the fluctuation of the
accuracy across different training runs is a good proxy for
the stability of the explanation protocols. This may be due
to models with similar accuracy learning similar functions,
and thus, providing similar explanations.

The absolute difference between evaluating on the origi-
nal test set and on a larger test set is even smaller (≤ 0.009
for mX), indicating that the proposed dataset size (500 im-
ages) is sufficiently large. We purposely did not use the
larger test set for the principal evaluation in the main pa-
per to keep the computational expense at bay and allow for
an easy adoption of our analysis framework in future work.
Note that for slower explanation methods like RISE [40],
evaluating 2 500 images would take ∼ 50h on an NVIDIA
A100-SXM4-40GB GPU, which would impair the practi-
cability of our proposed framework. Nevertheless, we will
also publish the larger test set for evaluation under these
conditions. To conclude, we find that our framework is quite
stable under different training runs and that our test set size
is sufficiently large.
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Table 3. Stability of our evaluation protocols. Scores indicate the absolute difference of two runs. See Sec. 4.1 of the main paper for a
description of the metrics. The mean explainability score (mX) denotes the mean of the final completeness, correctness, and contrastivity
scores. We report results for the stability across (1) two training runs and (2) between the original and a larger test set (see Appendix D.2).

Setup Backbone XAI
Method

|∆A| |∆BI| |∆CSDC| |∆PC| |∆DC| |∆D| |∆SD| |∆TS| |∆mX|

(1) VGG16 [53] IG [54] 0.002 0.003 0.008 0.008 0.008 0.001 0.015 0.005 0.005
(1) ResNet-50 [22] IG [54] 0 0.001 0 0.02 0.006 0 0.022 0.002 0.008
(1) ViT-B/16 [16] IG [54] 0.01 0 0.051 0.11 0.104 0.016 0.031 0.037 0.035
(1) VGG16 [53] IxG [53] 0.002 0.003 0.005 0.002 0.066 0.012 0.019 0.071 0.023
(1) ResNet-50 [22] IxG [53] 0 0.001 0.02 0.012 0.032 0.031 0.003 0.015 0.003
(1) ViT-B/16 [16] IxG [53] 0.01 0 0.066 0.12 0.126 0.026 0.017 0.06 0.039

(2) VGG16 [53] IG [54] 0.0128 0.001 0.008 0.027 0.004 0.013 0 0.007 0.001
(2) ResNet-50 [22] IG [54] 0.0124 0 0.008 0.079 0.003 0.029 0.032 0.005 0.009
(2) ViT-B/16 [16] IG [54] 0.0232 0 0.008 0.082 0.02 0.017 0.016 0.008 0.006
(2) VGG16 [53] IxG [53] 0.0128 0.001 0.004 0.054 0.001 0 0.006 0.013 0.001
(2) ResNet-50 [22] IxG [53] 0.0124 0 0.011 0.079 0.03 0.005 0.009 0.005 0.007
(2) ViT-B/16 [16] IxG [53] 0.0232 0 0.039 0.106 0.053 0.058 0.004 0 0.003

Original IxG | ResNet-50 IG | ResNet-50 IG abs. | ResNet-50 RISE | ResNet-50 Grad-CAM | ResNet-50 LIME | ResNet-50

IxG | VGG16 IG | VGG16 IG abs. | VGG16 RISE | VGG16 Grad-CAM | VGG16 LIME | VGG16

IxG | ViT-B/16 IG | ViT-B/16 IG abs. | ViT-B/16 RISE | ViT-B/16 Grad-CAM | ViT-B/16 LIME | ViT-B/16

X-DNN

BagNet

B-cos Network

ProtoPNet

Rollout | ViT-B/16Chefer LRP | ViT-B/16

Original IxG | ResNet-50 IG | ResNet-50 IG abs. | ResNet-50 RISE | ResNet-50 Grad-CAM | ResNet-50 LIME | ResNet-50

IxG | VGG16 IG | VGG16 IG abs. | VGG16 RISE | VGG16 Grad-CAM | VGG16 LIME | VGG16

IxG | ViT-B/16 IG | ViT-B/16 IG abs. | ViT-B/16 RISE | ViT-B/16 Grad-CAM | ViT-B/16 LIME | ViT-B/16

X-DNN

BagNet

B-cos Network

ProtoPNet

Rollout | ViT-B/16Chefer LRP | ViT-B/16

Figure 7. Additional qualitative results for the examined explanation methods. Each group of three rows shows results for the same input
image and all respective XAI methods and backbones that have been examined in our FunnyBirds framework. The displayed qualitative
results are consistent with the qualitative results in Fig. 3 from the main paper.



Figure 8. Example images from our FunnyBirds dataset.



Figure 9. Explanations and the extracted important parts. The left column of each block shows the original input image. Next, we show
the explanation from each respective XAI method. This is followed by the estimated important parts (estimated IP – highlighted in white)
from the explanation using our interface function P(·) with a threshold t = 0.02. In the last column, we show the ground-truth minimal
important parts from the controlled synthetic data check protocol (GT (CSDC) IP). For example, the parts estimated to be important by
Grad-CAM [48] in the left block are not fully complete, since fewer parts are highlighted than for GT (CSDC) IP.


