
Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models

A. Supplemental Video
Please watch our attached video 1 for a comprehensive

evaluation of the proposed method. We include rendered
videos of multiple generated scenes from novel trajecto-
ries, that showcase the quality of both generated texture and
geometry (and also show the generated ceilings). We also
show an animation how the mesh is built up over time, that
illustrates the usage of our two-stage pose sampling scheme
(generation and completion). We compare against baselines
and ablations of our method by showing rendered videos.

B. Societal Impact
Our method leverages text-to-image models to generate a

sequence of images from text, specifically we use the Stable
Diffusion model [20]. Thus it inherits possible drawbacks
of these 2D models. First, our method could be exploited
to generate harmful content, by forcing the text-to-image
model to generate respective images. Furthermore, our
method is biased towards the cultural or stereotypical data
distribution, that was used to train the text-to-image model.
Lastly, we note that text-to-image models are trained on
large-scale text-image datasets [21]. Thus, the model learns
to reproduce and combine the style of artists, whose works
are contained in these datasets. This raises questions regard-
ing the correct way to credit these artists or if it is ethical to
benefit from their works in this way at all.

Our method can be used to generate meshes, that depict
entire scenes, from only text as input. This significantly
reduces the required expertise to model and design such 3D
assets. Thus, we believe our work proposes a promising
step towards the democratization of large-scale 3D content
creation.

C. Limitations
Given a text prompt, our approach allows to generate 3D

room geometry that is highly detailed and contains consis-
tent 3D geometry. Nevertheless, our method can still fail
under certain conditions (see Figure 1).

First, our completion stage (see Section 3.4) might not
be able to inpaint all holes (Figure 1b). For example this
can happen, if an object contains holes that are close to a

1https://youtu.be/fjRnFL91EZc

wall. These angles are hard to see from additional cameras
and thus might remain untouched. We still close these holes
by applying Poisson surface reconstruction [11]. However,
this can results in overly smoothed geometry.

Second, our mesh fusion stage (see Section 3.3) might
not remove all stretched-out faces. Faces can appear
stretched-out because of imperfect depth estimation and
alignment. Over time this can yield unusual room shapes
such as the curved wall in Figure 1c. We apply two fil-
tering schemes to remove stretched-out faces before fus-
ing them with the existing geometry. Both use thresholds
δsn=0.1, δedge=0.1, that we fix during all our experiments.
It can happen that some faces are not removed by the filter-
ing schemes, but are still stretched-out unnaturally. How-
ever, we find that lowering the thresholds would also re-
move unstretched geometry. This would make creating a
complete scene harder, because more holes need to be in-
painted in the completion stage.

D. Details on User Study
We conduct a user study and ask n=61 users to score

Perceptual Quality (PQ) and 3D Structure Completeness
(3DS) of the whole scene on a scale of 1−5. We show an ex-
ample of how we asked the users to score these two metrics
in Figure 2. We present users with multiple images from
each scene, that show it from multiple angles. Then we ask
them to rate the scene on a scale from 1−5 by asking them
about the 3D structure completeness and the overall per-
ceptual quality. In total, we received 1098 datapoints from
multiple scenes and report averaged results per method.

E. Additional Implementation Details
We give additional implementation details in the follow-

ing subsections.

E.1. Importance of Predefined Trajectories

We create the complete scene layout and furniture in
the first stage of our tailored two-stage viewpoint selection
scheme (see Section 3.4). To this end, we sample multi-
ple predefined trajectories from which we iteratively gen-
erate the scene. We fix the trajectories for our main re-
sults, as we found it already creates rooms with a variety
of different layouts. Users can modify them according to



(a) created scene (b) overly smoothed geometry (c) stretched geometry
Figure 1. Limitations of our method. (a) Our approach creates scenes with compelling textures and complete structure like walls, floor
and ceiling. (b) Our completion stage (see Section 3.4) might not be able to inpaint all holes, if no suitable camera pose could be sampled
(e.g. small areas behind an object that are close to a wall). The hole is still closed through Poisson reconstruction [11], but the geometry
may become smoothed. (c) Our fusion stage (see Section 3.3) might not remove all stretched-out faces, because we use fixed thresholds.

Figure 2. User study interface. (Top) We present users with mul-
tiple images from each scene, that show it from multiple angles.
(Bottom) We ask users to rate the scene on a scale from 1−5 by
asking them about the 3D structure completeness (question 1) and
the overall perceptual quality (question 2).

our guidelines as demonstrated in Section 4.4 in the main
paper. Each trajectory consists of a start pose and an end
pose and we linearly interpolate between both. We found
generation works best, if each trajectory starts off from a
viewpoint with mostly unobserved regions. This gives the
text-to-image model enough freedom to create novel con-
tent with reasonable global structure.

Thus, we construct each trajectory with the following
principle. First, we select a start pose that views mostly un-
observed content and generate the outline of the next scene
chunk from it (Figure 3b). Then, we subsequently translate
and rotate into the chunk to refine its 3D structure until the
end of the trajectory (Figure 3c). This creates mesh patches
with convincing 3D structure (Figure 3d). In contrast, if

we design trajectories that do not follow this principle, re-
sults can degenerate. For example, if the viewpoint change
is small, the text-to-image model creates novel content only
for small portions of the image (Figure 3e-g). Thus, locally
the generated content looks reasonable, but it accumulates
into inconsistent global structure (Figure 3h).

E.2. Effect of Depth Smoothing in Alignment

For each camera pose in both stages, we follow an itera-
tive scene generation scheme (see Section 3.1). After gener-
ating novel content, we predict its depth in our depth align-
ment stage (see Section 3.2). First, we predict the depth
using a monocular depth inpainting network (Figure 4b).
However, directly using this depth for mesh fusion results
in unaligned mesh patches (Figure 4g). Thus, we improve
the result by aligning rendered depth and inpainted depth
in the least squares sense (Figure 4c). Finally, we smooth
the aligned depth by applying a 5 × 5 gaussian blur kernel
at the image edges between rendered and predicted depth
(Figure 4d). This smoothens out remaining discontinuity
artifacts between old and new content (Figure 4e and f).
In practice, we found this can further reduce sharp borders
between objects, leading to overall better alignment (Fig-
ure 4h).

E.3. Importance of Mask Dilation in Completion

We complete the scene in the second stage of our tailored
two-stage viewpoint selection scheme, by filling in remain-
ing holes in the mesh (see Section 3.4). To this end, we
first select suitable camera poses that look at these holes
(Figure 5a). We then follow the iterative scene generation
scheme to fill in the holes in the mesh (see Section 3.1).
The holes can have arbitrarily small or large sizes, depend-
ing on how the scene layout was generated in the first stage
of our method (Figure 5b). Similarly to Fridman et al. [4],
we found that directly inpainting such holes can lead to
sub-optimal results (Figure 5c). This is because the text-to-
image model needs to inpaint small regions and the direct



(a) start image (b) ours: next chunk (c) ours: refine chunk (d) ours: after trajectory

(e) small change I (f) small change II (g) small change III (h) small change: after trajectory
Figure 3. Importance of predefined trajectories. We sample predefined trajectories in the first stage of our tailored two-stage viewpoint
selection scheme (see Section 3.4). First, we create the outline of the next scene chunk (b). Then, we sample additional poses that translate
and rotate into the new scene chunk to complete its 3D structure (c). This results in a 3D consistent next mesh patch, that we fuse with
existing content (d). In contrast, results degenerate (h), if we sample sub-optimal poses (e.g. small viewpoint changes in e-g).

neighborhood of the holes can be distorted. To alleviate
this issue, we inpaint small holes with a classical inpaint-
ing algorithm [22]. We classify small holes by applying a
morphological erosion operation with a 3× 3 kernel on the
inpainting mask. Next, we increase the size of remaining
holes, by repeating a morphological dilation operation with
a 7× 7 kernel on the eroded inpainting mask for five times
(Figure 5d). Finally, we inpaint the image using the dilated
mask (Figure 5e). This yields more convincing results be-
cause the text-to-image model can inpaint larger areas and
create more meaningful global structure. To combine the
new content with the existing mesh, we apply our triangu-
lation scheme (see Section 3.3). Additionally, we remove
all faces that fall into the dilated region and are close to the
rendered screen-space depth (since they are replaced by the
novel content).

F. Additional Discussion on Related Methods
and Baselines

To the best of our knowledge, there are no direct base-
lines that generate textured 3D room geometry from text.
We compare against four related methods, that do not re-
quire supervision from 3D datasets. In the following we
give additional discussion on related methods and our se-
lected baselines.

PureClipNeRF [14]: We compare against text-to-3D meth-
ods for generating objects [18, 15, 9, 14, 23] and choose
Lee et al. [14] as open-source representative. A common
pattern in these text-to-3D methods is to sample inward-
facing poses on a hemisphere, from which the object is iter-
atively optimized. While the method of Lee et al. [14] does
not use a diffusion model to create high-fidelity images, it
still uses the same pose sampling pattern. This allows us
to compare against these methods in general, by analyz-
ing how well this pose sampling pattern can produce com-
plete 3D scenes with structural elements like walls or floors.
We also run DreamFusion [18] from the third-party imple-
mentation of Guo et al. [5], see Figure 6. Similar to Pure-
ClipNeRF, object-centric cameras yield incomplete rooms.
Outward-facing cameras yield blurry 360◦ surroundings,
showing floaters when rendered out-of-distribution.

Outpainting [19, 17]: We compare against image outpaint-
ing. We combine outpainting from a Stable Diffusion [20]
model with depth estimation and triangulation to create a
mesh from an enlarged viewpoint. Starting off from a single
generated image, we can synthesize novel content around
it to create a complete scene in a single image plane (Fig-
ure 7a). After creating the image, we then perform depth es-
timation and triangulation to lift the image into a 3D mesh.

Text2Light [3]: We generate RGB panoramas from text



(a) rendered depth (b) inpainted depth (c) aligned depth (d) aligned + smoothed depth

(e) zoom-in of (c) (f) zoom-in of (d) (g) fused mesh from (b) (h) fused mesh from (d)
Figure 4. Details on the depth alignment step. For each novel pose, we predict the depth for the newly generated image content (see
Section 3.2). First we inpaint the depth using a monocular depth prediction network (b). Then, we align inpainted depth (b) and rendered
depth (a) in the least squares sense to obtain an aligned depth (c). Finally, we smooth the result to remove remaining sharp borders between
old and new content (d). This results in smoother, less blocky depth (e and f). Our depth alignment is necessary to create transitions without
holes between mesh patches (g and h).

(a) rendered image (b) rendered mask (c) inpaint naı̈ve (d) dilated mask (e) inpaint dilated
Figure 5. Importance of mask dilation during completion. In our second stage, we complete the scene mesh by filling in unobserved
regions (see Section 3.4). First, we sample camera poses that view such unobserved regions (a). The unobserved regions can have arbitrary
size (b). Directly inpainting only the masked regions from (b) gives distorted results, because the holes can be too small for reasonable
inpainting results (c). Instead, we inpaint small holes with a classical inpainting method [22] and dilate remaining holes to a larger size (d).
The resulting image after inpainting contains more reasonable structure (e).

Figure 6. Left: DreamFusion-Inward. Mid/Right: DreamFusion-
Outward from in- and out-of-distribution viewpoints.

using Chen et al. [3]. We show example outputs in Fig-
ure 7b. One can create immersive experiences by render-

ing a panorama onto a sphere, allowing to view the scene
from arbitrary 360◦ viewpoints. However, it is not possible
to simulate a true 3D environment directly (e.g., translat-
ing or rotating around objects), because the panorama only
captures a single viewpoint. Thus, related approaches esti-
mate room layout [24], perform view synthesis [12, 7, 6, 8]
or predict 360◦ depth [1, 10] from one or multiple panora-
mas. To compare to our method, we reconstruct the 3D
mesh structure that can be obtained from a single panoramic
image. To this end, we perform depth prediction and subse-



a bedroom with a king-size bed and a large wardrobe

Editorial Style Photo, Industrial Home Office, Steel Shelves, Concrete, Metal, Edison Bulbs, Exposed Ductwork
(a) Outpainting [19, 17] (b) Text2Light [3] (c) Blockade [13]

Figure 7. Intermediate results from baselines. We first produce these intermediate results, before unprojecting them into a 3D mesh. (a)
Outpainting [19, 17] generates an enlarged scene from a single viewpoint. (b) Text2Light [3] creates a panoramic image of a scene. (c)
Blockade [13] creates a panoramic image of a scene.

quently apply our mesh fusion step.

Blockade [13]: We compare against Blockade [13], which
uses a text-to-image diffusion model to produce expressive
RGB panoramas. We then extract the mesh similarly.

GAUDI [2]: Bautista and Guo et al. [2] present a method
to generate large-scale 3D scenes encoded into a NeRF [16]
representation. Their generative model can be conditioned
to produce 3D indoor scenes from text as input. In gen-
eral, each scene allows for a different distribution of camera
poses. Walls and objects are placed at different positions
in each scene, thus it depends on the scene to determine
valid camera poses. They model this joint latent distribution
of scenes and cameras. This allows to synthesize scenes
that can be rendered from corresponding camera trajecto-
ries (e.g., a scene is rendered in a forward motion). How-
ever, it requires training supervision from 3D datasets that
contain ground-truth camera trajectories. This restricts the
method to the domain of a specific dataset of (synthetic,
low-resolution) 3D scenes, which is limited in size and di-
versity.

In contrast, we choose another approach to represent the
joint distribution of scenes and camera trajectories. Our
two-stage tailored viewpoint selection (see Section 3.4) first
creates the general scene layout and furniture from prede-
fined trajectories. We choose these trajectories such that the
camera poses do not intersect with generated geometry (see
Section 3.4 for more details). Then we inpaint remaining
holes by sampling additional poses. This allows us to gen-
erate complete scenes with varying layouts. Our resulting
mesh can be rendered from arbitrary viewpoints, i.e., it is
not bound to the specific trajectory used during generation.

Furthermore, our method can directly lift the generated im-
ages of a 2D text-to-image model into 3D, without requir-
ing supervised training from 3D datasets. This allows us to
generate meshes, that can represent a much larger and more
diverse set of indoor scenes with higher visual quality.

G. Additional Qualitative Results
We show additional qualitative results of our method in

Figure 8.



Editorial Style Photo, Rustic Farmhouse, Living Room, Stone Fireplace, Wood, Leather, Wool

A small office with a chair, desk and monitors

A library with tall bookshelves, tables, chairs, and reading lamps

A large bathroom with shower, bathtub and a cozy wellness area
Figure 8. 3D scene generation results of our method. We show color and shaded geometry renderings from generated scenes with
corresponding text prompts. Our method synthesizes realistic meshes satisfying text descriptions. We remove the ceiling in the top-down
view for better visualization of the scene layout.
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