
Supplementary Material for

DiffPose: Multi-hypothesis Human Pose Estimation using Diffusion Models

1. Additional Results

In addition to the experiments, we report results for Hu-
man3.6M (H36M), H36MA and MPI-INF-3DHP (3DHP)
for a larger number of hypotheses in Tables 5 and 6, respec-
tively. With an increasing number of samples, the perfor-
mance of our model increases significantly. Fig. 6 shows
this effect visually. Although this behavior is partially ex-
pected, our closest competitor [6] shows no such improve-
ments and saturates in performance at approximately 500
samples. This underlines that our model produces more di-
verse samples that better cover the posterior distribution.

Furthermore, we provide results for MPJPE and PA-
MPJPE for the MPI-INF-3DHP dataset in Tab. 6 that were
not evaluated by previous methods.

1.1. Non-finetuned HRNet

In addition to our main results, which use the same 2D
joint detector as Wehrbein et al. [6], we report the results
using the non-finetuned network weights from [5] in Ta-
bles 6 and 7. It is important to note that most of the meth-
ods compared on the full Human3.6M dataset and all on
the hard subset (H36MA) utilize the 2D annotations of the
H36M dataset to pre-train the 2D joint detector, as done
in [2, 1, 4, 6, 3]. Using a non-finetuned 2D pose detector,
the results on H36M and H36MA in Tab. 7 are expected
to decrease, DiffPose is still competitive, especially on the
harder samples in H36MA. Probably much due to the more
realistic poses, as indicated by the lower symmetry error
and higher CPS.

When investigating the generalizability of the network
to the MPI-INF-3DHP dataset, there is a clear improve-
ment of the performance in all settings when not using the
fine-tuned weights. We hypothesize that the fine-tuning on
H36M overfits to the background and poses in the dataset
and is therefore not as well generalizable to other datasets.
All PCK metrics improve by 10−20% except for the Studio
GS setting. Table 6 also shows that an increasing number of
hypotheses leads to a drastic increase in the performance of
DiffPose when using the original weights.

2. Network Architecture - details

The number of parameters of DiffPose are 11.4M in total
(6.4M for the denoiser and 5.0M for the embedding trans-
former) when using the proposed hyper-parameters.

2.1. Condition Embedding

Positional embedding. We use 64 bases per dimension
to create the positional embedding, the centers are evenly
spread on the interval [-1, 1]. The embeddings of the x-
and y-coordinate are concatenated into a single vector and
passed into a linear layer with 128 input and output chan-
nels. The embedded joint samples are summed into a joint
embedding of dimension 128 before a learned positional
joint embedding is added to the embedding. Each individual
joint embedding is passed to a transformer encoder with 4
layers, each using 4-heads and a feed-forward dimension of
512. The modified joint embeddings are concatenated into
a single 16×128-dimensional feature vector and projected
using a linear layer into a 16×128-dim conditioning vector.

2.2. Denoiser

The denoiser concatenates the 16×128-dimensional con-
dition vector, with the 48-dimensional positional vector x
and the 1-dimensional timestep (in the range [0, #steps)).
This results in a vector of 16·128+48+1=2097-dimensions
that is projected into a 1024-dim vector before being pro-
cessed by two fully-connected ResNet-blocks (w/o any nor-
malization layer).

2.3. Dropout

Dropout of joints was used during training by randomly
selecting joints with a probability of 1% and setting the
positional embedding (before the concatenation and the
projection-layer) for all samples of those joints to zero. It
is possible that multiple or no joints are dropped for a given
pose.

2.4. Full heatmap conditioning

As an alternative to our embedding transformer a
ResNet-18 network was used for directly generating an em-
bedding vector from the full stack of heatmaps for Diffusion
baseline - full heatmap in the ablation study. This was ac-
complished by replacing the first layer of a non-pretrained
ResNet181, with a 16-channel convolutional layer and pass-
ing the full stack of joint heatmaps as an input. Changing
the output dimensionality to match the embedding vector
used for DiffPose. The performance is drastically worse
than DiffPose, as shown in Tab. 4. Given the qualitative re-

1ResNet-model from torchvision: https://pytorch.org/
vision/stable/models.html

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html


Table 5. Quantitative results on the two H36M datasets. The table illustrates how an increasing number of hypotheses affects the per-
formance of our method. As seen, our method continues to improve, far exceeding competing methods when the number of hypotheses
increases.

H36M H36MA
Method MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓ PCK ↑ CPS ↑

Li et al. [1] (M=5) 52.7 42.6 81.1 66.0 85.7 119.9
Li et al. [2] (M=10) 73.9 44.3 - - - -

Sharma et al. [4] (M=10) 46.8 37.3 78.3 61.1 88.5 136.4
Wehrbein et al. [6] (M=200) 44.3 32.4 71.0 54.2 93.4 171.0

DiffPose (M=200) 42.9±0.27 30.8±0.05 63.1±0.43 46.7±0.14 94.9±0.01 195.5±3.5

DiffPose (M=2000) 37.9±0.17 27.5±0.02 56.6±0.18 41.6±0.07 96.5±0.004 212.5±2.0

DiffPose (M=10000) 35.3±0.14 25.7±0.06 52.9±0.08 38.9±0.05 97.2±0.005 221.2±1.8

Table 6. Quantitative results on MPI-INF-3DHP. This table contains the mean and variance over 5 runs, evaluated using different amount
of hypotheses. As can be seen, our method continuously improves with increasing amounts of hypotheses. We also report the results using
the same 2D detector but without finetuning on H36M.

Num hypo. MPJPE PA-MPJPE Studio GS ↑ Studio no GS ↑ Outdoor ↑ All PCK ↑
Li et al. [2] (M=10) — — 86.9 86.6 79.3 85.0
Li et al. [1] (M=5) — — 70.1 68.2 66.6 67.9

Wehrbein et al. [6] (M=200) — — 86.6 82.8 82.5 84.3
DiffPose
M=200 108.3± 5.6 66.4± 0.4 87.4±0.37 82.7±0.16 83.6±0.26 84.7±0.13

M=2000 99.0± 4.8 60.8± 0.3 90.2±0.39 85.8±0.08 86.3±0.33 87.6±0.08

M=10000 93.9± 5.4 57.8± 0.2 91.7±0.25 87.3±0.09 87.5±0.4 89.1±0.06

DiffPose (Not finetuned on H36M):
M=200 94.7± 2.4 64.7± 1.4 87.9±0.16 84.9±0.21 86.5±0.36 86.5±0.07

M=2000 84.9± 1.8 58.6± 0.8 91.3±0.12 88.8±0.19 89.9±0.27 90.0±0.10

M=10000 80.0± 1.8 55.1± 2.2 92.8±0.06 90.7±0.15 91.4±0.20 91.7±0.08

sults in Fig. 7, we hypothesize this is due to a mode-collapse
where only a single pose is predicted for all datasets.

3. Qualitative examples

Fig. 8 shows more qualitative examples. Joints that are
easy to detect result in a very clear heatmap and, accord-
ingly, a 3D reconstruction with a low diversity (row 1 and
2). When the 2D joint detector predicts a heatmap with high
uncertainty, the method of Wehrbein et al. [6] struggles to
fully cover it. This leads to

1. massively diverse poses, which are highly implausible
(cf. symmetry error in Tab. 2 in the main paper), as
shown in row 5, and

2. over-confident predictions of a set of close poses that
might be far away from the ground truth, as shown in
rows 4, 6, and 8.

Our method compensates for these effects by either predict-
ing some poses that correspond to lower confidence areas or
selecting joint positions that are anatomically plausible. An
example of anatomical plausibility is shown in row 4 where
the position of the elbow is clear but the wrist is wrongly
detected. Our model predicts a set of poses where the wrist
joint follows an arc, which can be interpreted as a rotation
around the elbow joint.
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Figure 6. Plots for the three different datasets that illustrate how performance changes as the number of hypotheses generated increases.
The results of DiffPose is the average of five different models trained with the same architecture and parameter setting but different random
seeds, in addition to the mean we also show the variance as a light-red band of ±5σ2. Note that the variance is scaled to increase visibility.

Table 7. Results of finetuned and non-finetuned 2D joint detector on the various datasets. Note that all compared methods in this table train
or finetune the 2D joint detector on the Human3.6m dataset.

H36M H36MA 3DHP
Method MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓ CPS ↑ Sym ↓ Studio GS ↑ Studio no GS ↑ Outdoor ↑ All PCK ↑
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Li et al. [1] 52.7 42.6 81.1 66.0 119.9 - 70.1 68.2 66.6 67.9
Li et al. [2] 73.9 44.3 - - - - 86.9 86.6 79.3 85.0

Sharma et al. [4] 46.8 37.3 78.3 61.1 136.4 23.9 - - - -
Wehrbein et al. [6] 44.3 32.4 71.0 54.2 171.0 27.4 86.6 82.8 82.5 84.3

DiffPose 42.9±0.27 30.8±0.05 63.1±0.43 46.7±0.14 195.5±3.5 14.9±0.02 87.4±0.37 82.7±0.16 83.6±0.26 84.7±0.13

DiffPose 48.1±0.17 34.9±0.02 75.5±0.75 56.6±0.17 168.6±2.2 14.3±0.09 87.9±0.16 84.9±0.21 86.5±0.36 86.5±0.07

Figure 7. Qualitative examples for ResNet18 embedded heatmaps on H36M. All poses degenerates to a single prediction. Left column is
ground-truth poses while right column shows some of the sampled poses.



Figure 8. Qualitative examples for H36MA. For better visibility, we only show samples for interesting joints. Our predictions cover the
information in the heatmaps well and include the ground truth 3D joint (red dot).


